IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i15p5543-5553.html
   My bibliography  Save this article

Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District

Author

Listed:
  • Jinping Zhang
  • Yong Zhao
  • Weihua Xiao

Abstract

Based on the markov theory, the first-order markov joint transition probability of rainfall and reference crop evapotranspiration is analyzed to reveal their joint transition laws. Then using copula function, the joint probability distribution of rainfall and reference crop evapotranspiration is built, and the conditional probabilities of rainfall and reference crop evapotranspiration are also presented. The results show that the first-order markov joint transition probability to rich-rich state and rich-poor state of rainfall and reference crop evapotranspiration is larger. The joint encounter frequency of rainfall and reference crop evapotranspiration in synchronous encounter situation is different with that in asynchronous encounter situation. The selected frank copula showing the joint probability distribution characteristics of rainfall and reference crop evapotranspiration is reasonable. When reference crop evapotranspiration is less than 1,865 mm, the sort of its conditional probability in different rainfall states is rich rainfall>normal rainfall>poor rainfall, which presents an opposite to the conditional probability of rainfall in different reference crop evapotranspiration states when rainfall is less than 1,105 mm. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Jinping Zhang & Yong Zhao & Weihua Xiao, 2014. "Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5543-5553, December.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:15:p:5543-5553
    DOI: 10.1007/s11269-014-0821-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0821-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0821-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harris Vangelis & Mike Spiliotis & George Tsakiris, 2011. "Drought Severity Assessment Based on Bivariate Probability Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 357-371, January.
    2. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    3. Ali Tabrizi & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2010. "Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4287-4306, December.
    4. D. Fu & Y. Li & G. Huang, 2013. "A Factorial-based Dynamic Analysis Method for Reservoir Operation Under Fuzzy-stochastic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4591-4610, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jinping & Xiao, Honglin & Li, Jiayi & Shi, Xixi, 2021. "Study on the cointegration relationship between water supply and demand in the irrigation district with structural breaks," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Zhang, Yaling & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Junqin & Zhan, Cun & Jiang, Shouzheng, 2022. "Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    2. Seyed Banimahd & Davar Khalili, 2013. "Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3911-3928, September.
    3. Zhang, Yaling & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Junqin & Zhan, Cun & Jiang, Shouzheng, 2022. "Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Zhao Liu & Yiping Guo & Lixia Wang & Qing Wang, 2015. "Streamflow Forecast Errors and Their Impacts on Forecast-based Reservoir Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4557-4572, September.
    5. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    6. Muhammad Nouman Sattar & Jin-Young Lee & Ji-Yae Shin & Tae-Woong Kim, 2019. "Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2439-2452, May.
    7. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    8. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    9. Muhammad Imran Khan & Dong Liu & Qiang Fu & Qaisar Saddique & Muhammad Abrar Faiz & Tianxiao Li & Muhammad Uzair Qamar & Song Cui & Chen Cheng, 2017. "Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3921-3937, September.
    10. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    11. Poulomi Ganguli & M. Reddy, 2012. "Risk Assessment of Droughts in Gujarat Using Bivariate Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3301-3327, September.
    12. Li, Zhou & Quan, Jin & Li, Xiao-Yan & Wu, Xiu-Chen & Wu, Hua-Wu & Li, Yue-Tan & Li, Guang-Yong, 2016. "Establishing a model of conjunctive regulation of surface water and groundwater in the arid regions," Agricultural Water Management, Elsevier, vol. 174(C), pages 30-38.
    13. Manman Zhang & Dang Luo & Yongqiang Su, 2022. "Drought monitoring and agricultural drought loss risk assessment based on multisource information fusion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 775-801, March.
    14. Kozek Malwina & Tomaszewski Edmund, 2022. "Dynamics of hydrological droughts propagation in mountainous catchments," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(2), pages 111-124, April.
    15. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    16. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2015. "Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model," Agricultural Water Management, Elsevier, vol. 147(C), pages 67-81.
    17. Li, Jiang & Song, Jian & Li, Mo & Shang, Songhao & Mao, Xiaomin & Yang, Jian & Adeloye, Adebayo J., 2018. "Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty," Agricultural Water Management, Elsevier, vol. 208(C), pages 245-260.
    18. Dedi Liu & Xiaohong Chen & Teddy Nakato, 2012. "Resilience Assessment of Water Resources System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3743-3755, October.
    19. Teodoro Estrela & Elisa Vargas, 2012. "Drought Management Plans in the European Union. The Case of Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1537-1553, April.
    20. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:15:p:5543-5553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.