IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000744.html
   My bibliography  Save this article

Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal

Author

Listed:
  • Ramos, Tiago B.
  • Darouich, Hanaa
  • Oliveira, Ana R.
  • Farzamian, Mohammad
  • Monteiro, Tomás
  • Castanheira, Nádia
  • Paz, Ana
  • Gonçalves, Maria C.
  • Pereira, Luís S.

Abstract

Orchards consist of complex agricultural systems, with a variety of characteristics (planting density, tree height, training system, canopy cover, irrigation method, interrow management) influencing crop evapotranspiration (ETc). Thus, irrigation water management requires finding crop coefficients (Kc) that represent the characteristics of local orchards, evidencing the need for site specific data. The main objective of this study was to derive the Kc of almond, olive, citrus, and pomegranate orchards in Alentejo, southern Portugal, wherein they became dominant over the last decade. Monitoring was carried out in nine orchards, which management decisions were performed by the farmers. The ETc was estimated from the soil water balance computed for each orchard using the FAO56 dual-Kc approach with the SIMDualKc model. The model successfully simulated the soil water contents measured in the various fields along two growing seasons, with root mean square error values lower than 0.005 m3 m−3 and modeling efficiencies from 0.363 to 0.782. The estimated basal crop coefficients (Kcb) for the initial, mid- and end-seasons were respectively 0.22, 0.58, and 0.50 for almond; 0.32–0.33, 0.35–0.36, and 0.33–0.34 for olive; 0.40, 0.40–41, and 0.40–0.41 for citrus; and 0.24, 0.60, and 0.52 for pomegranate. Small variations in olive and citrus Kcb values were found to be related to differences in the fraction of the ground covered by trees’ canopies and tree height. The single Kc values, which included the component relative to soil evaporation, were also estimated. Furthermore, evaluation of the soil water balance in the nine case studies showed salinity effects in one almond orchard, mild irrigation water deficits in olive systems, and large non-consumptive water use in citrus and pomegranate orchards. These results evidence the need for better management of orchards irrigation water in the region, and the current study provides for reliable information on the Kc of tree crops to support improving the management of local orchard systems and the preservation of soil and water resources. Aimed at these resources and the sustainability of their use, simulated alternative irrigation schedules were performed, which identified possible water savings of 20 mm in case of olives, up to 855 mm for citrus.

Suggested Citation

  • Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000744
    DOI: 10.1016/j.agwat.2023.108209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    2. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    4. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    5. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Qunying Luo, 2011. "Temperature thresholds and crop production: a review," Climatic Change, Springer, vol. 109(3), pages 583-598, December.
    8. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Hernández, M. Luisa & Velázquez-Palmero, David & Sicardo, M. Dolores & Fernández, José E. & Diaz-Espejo, Antonio & Martínez-Rivas, José M., 2018. "Effect of a regulated deficit irrigation strategy in a hedgerow ‘Arbequina’ olive orchard on the mesocarp fatty acid composition and desaturase gene expression with respect to olive oil quality," Agricultural Water Management, Elsevier, vol. 204(C), pages 100-106.
    10. Martínez-Nicolás, J.J. & Galindo, A. & Griñán, I. & Rodríguez, P. & Cruz, Z.N. & Martínez-Font, R. & Carbonell-Barrachina, A.A. & Nouri, H. & Melgarejo, P., 2019. "Irrigation water saving during pomegranate flowering and fruit set period do not affect Wonderful and Mollar de Elche cultivars yield and fruit composition," Agricultural Water Management, Elsevier, vol. 226(C).
    11. Ayars, James E. & Phene, Claude J. & Phene, Rebecca C. & Gao, Suduan & Wang, Dong & Day, Kevin R. & Makus, Donald J., 2017. "Determining pomegranate water and nitrogen requirements with drip irrigation," Agricultural Water Management, Elsevier, vol. 187(C), pages 11-23.
    12. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    13. Intrigliolo, D.S. & Nicolas, E. & Bonet, L. & Ferrer, P. & Alarcón, J.J. & Bartual, J., 2011. "Water relations of field grown Pomegranate trees (Punica granatum) under different drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 691-696, February.
    14. Cancela, J.J. & Fandiño, M. & Rey, B.J. & Martínez, E.M., 2015. "Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía)," Agricultural Water Management, Elsevier, vol. 151(C), pages 52-63.
    15. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    16. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    17. Er-Raki, S. & Chehbouni, A. & Hoedjes, J. & Ezzahar, J. & Duchemin, B. & Jacob, F., 2008. "Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET," Agricultural Water Management, Elsevier, vol. 95(3), pages 309-321, March.
    18. Moriana, Alfonso & Perez-Lopez, David & Gomez-Rico, Aurora & Salvador, Maria de los Desamparados & Olmedilla, Nicolas & Ribas, Francisco & Fregapane, Giuseppe, 2007. "Irrigation scheduling for traditional, low-density olive orchards: Water relations and influence on oil characteristics," Agricultural Water Management, Elsevier, vol. 87(2), pages 171-179, January.
    19. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    20. Grattan, S.R. & Berenguer, M.J. & Connell, J.H. & Polito, V.S. & Vossen, P.M., 2006. "Olive oil production as influenced by different quantities of applied water," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 133-140, September.
    21. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    22. Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
    23. Liu, Y. & Pereira, L.S. & Fernando, R.M., 2006. "Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 27-40, July.
    24. López-Urrea, R. & Martín de Santa Olalla, F. & Montoro, A. & López-Fuster, P., 2009. "Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions," Agricultural Water Management, Elsevier, vol. 96(6), pages 1031-1036, June.
    25. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    26. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    27. Cameira, M.R. & Pereira, A. & Ahuja, L. & Ma, L., 2014. "Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 146(C), pages 346-360.
    28. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    29. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    30. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    31. Ramos, Alice F. & Santos, Francisco L., 2010. "Yield and olive oil characteristics of a low-density orchard (cv. Cordovil) subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(2), pages 363-373, February.
    32. Conceição, Nuno & Tezza, Luca & Häusler, Melanie & Lourenço, Sónia & Pacheco, Carlos A. & Ferreira, M. Isabel, 2017. "Three years of monitoring evapotranspiration components and crop and stress coefficients in a deficit irrigated intensive olive orchard," Agricultural Water Management, Elsevier, vol. 191(C), pages 138-152.
    33. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    34. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    35. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    36. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).
    37. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Fu, Chong & Song, Xiaoyu & Li, Lanjun & Zhao, Xinkai & Meng, Pengfei & Wang, Long & Wei, Wanyin & Guo, Songle & Zhu, Deming & He, Xi & Yang, Dongdan & Li, Huaiyou, 2024. "Combining the FAO-56 method and the complementary principle to partition the evapotranspiration of typical plantations and grasslands in the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    5. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    7. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    13. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    14. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    15. Mashabatu, Munashe & Ntshidi, Zanele & Dzikiti, Sebinasi & Jovanovic, Nebojsa & Dube, Timothy & Taylor, Nicky J., 2023. "Deriving crop coefficients for evergreen and deciduous fruit orchards in South Africa using the fraction of vegetation cover and tree height data," Agricultural Water Management, Elsevier, vol. 286(C).
    16. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    18. Ebtessam A. Youssef & Marwa M. Abdelbaset & Osama M. Dewedar & José Miguel Molina-Martínez & Ahmed F. El-Shafie, 2023. "Crop Coefficient Estimation and Effect of Abscisic Acid on Red Cabbage Plants ( Brassica oleracea var. Capitata) under Water-Stress Conditions," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    19. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    20. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.