IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v298y2024ics0378377424002014.html
   My bibliography  Save this article

Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land

Author

Listed:
  • Zhao, Xiaole
  • Mak-Mensah, Erastus
  • Zhao, Wucheng
  • Wang, Qi
  • Zhou, Xujiao
  • Zhang, Dengkui
  • Zhu, Jinhui
  • Qi, Wenjia
  • Liu, Qinglin
  • Li, Xiaoling
  • Li, Xuchun
  • Liu, Bing

Abstract

Water scarcity and water-related soil erosion are severely exacerbated by inappropriate human activities and global climate change. Hence, to find a suitable technology to mitigate drought and soil erosion, three consecutive field experiments were conducted to explore the impact of ridge-furrow cropping with biochar amendment on soil water storage, runoff, sediment yield, soil nutrient losses, alfalfa (Medicago sativa L) fodder yield, crop water productivity (WPc), and economic benefit from 2019 to 2021. This experiment was conducted in a split-plot design, taking biochar amendment patterns (no biochar amendment and biochar amendment at a rate of 3× 104 kg ha−1) as a main plot and ridge-furrow technologies (traditional planting, open-ridging, and tied-ridging) as a split-plot. The combination of biochar amendment with ridge-furrow technology, especially tied-ridging technology, increased soil water storage, and captured runoff, sediment, and related soil nutrient losses, consequently increasing alfalfa fodder yield, WPc, and income. During this study, compared to traditional planting, open-ridging depicted an increase in soil water storage by a range of 9.8–39.6 mm, an alfalfa fodder yield boost ranging from 9.8% to 38.6%, and a WPc increase ranging from 0.1 to 16.5 kg ha−1 mm−1. On the other hand, tied-ridging showed greater improvements with soil water storage increasing by 29.1–65.1 mm, alfalfa fodder yield growing by 11.6–44.4%, and WPc advancing by 0.9–17.5 kg ha−1 mm−1. The mean decrease in runoff, sediment, and nutrients (total nitrogen, total phosphorus, and organic matter) loss for open-ridging was 17.9%-37.7%, 46.4%-75.5%, and 40.4%-75.3%, respectively, while for tied-ridging, it was 22.3%-55.5%, 62.1%-87.6%, and 49.0%-87.3%, respectively. Compared to no biochar amendment, soil water storage, alfalfa fodder yield, and WPc for biochar amendment increased by 9.1%-20.4%, 5.8%-52.7%, and 4.6–7.8 kg ha−1 mm−1, respectively, while runoff, sediment, and nutrients loss for biochar amendment decreased by 32.2%-40.9%, 25.5%-55.5%, and 35.9%-53.3%, respectively. Structural equation modeling analysis indicated that the significant direct effect of biochar amendment and ridge-furrow technology on WPc was 0.20 and 0.62, respectively, whereas the significant direct effect of runoff and actual crop evapotranspiration on alfalfa fodder yield was −0.40 and 0.94, respectively. Tied-ridge cropping combined with biochar addition was a highly suggested approach for addressing soil erosion and enhancing alfalfa fodder yields in the Loess Plateau in China. This technology could mitigate soil water scarcity and soil erosion, and give farmers the confidence to invest in this technology in dryland regions.

Suggested Citation

  • Zhao, Xiaole & Mak-Mensah, Erastus & Zhao, Wucheng & Wang, Qi & Zhou, Xujiao & Zhang, Dengkui & Zhu, Jinhui & Qi, Wenjia & Liu, Qinglin & Li, Xiaoling & Li, Xuchun & Liu, Bing, 2024. "Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land," Agricultural Water Management, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s0378377424002014
    DOI: 10.1016/j.agwat.2024.108866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dercon, Stefan & Christiaensen, Luc, 2011. "Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia," Journal of Development Economics, Elsevier, vol. 96(2), pages 159-173, November.
    2. Cherobim, Verediana Fernanda & Huang, Chi-Hua & Favaretto, Nerilde, 2017. "Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses," Agricultural Water Management, Elsevier, vol. 184(C), pages 96-103.
    3. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Pinardi, Monica & Soana, Elisa & Severini, Edoardo & Racchetti, Erica & Celico, Fulvio & Bartoli, Marco, 2022. "Agricultural practices regulate the seasonality of groundwater-river nitrogen exchanges," Agricultural Water Management, Elsevier, vol. 273(C).
    5. Tugrul Yakupoglu & Recep Gundogan & Turgay Dindaroglu & Kadir Kusvuran & Veysel Gokmen & Jesus Rodrigo-Comino & Yeboah Gyasi-Agyei & Artemi Cerdà, 2021. "Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    6. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan, 2019. "Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency," Agricultural Water Management, Elsevier, vol. 218(C), pages 60-67.
    7. Bai, Mengjie & Tao, Qibo & Zhang, Zuxin & Lang, Shuqing & Li, Junhui & Chen, Dali & Wang, Yanrong & Hu, Xiaowen, 2023. "Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Wu, Lei & Liu, Xia & Ma, Xiaoyi, 2021. "How biochar, horizontal ridge, and grass affect runoff phosphorus fractions and possible tradeoffs under consecutive rainstorms in loessial sloping land?," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Jing, Lanshu & Weng, Baisha & Yan, Denghua & Yuan, Fei & Zhang, Shanjun & Bi, Wuxia & Yan, Siying, 2023. "Assessment of resilience in maize suitable planting areas under drought stress," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Li, Yi & Yao, Ning & Liang, Jiaping & Wang, Xiaofang & Niu, Ben & Jia, Yonglin & Jiang, Fuchang & Yu, Qiang & Liu, De Li & Feng, Hao & He, Hailong & Yang, Guang & Pulatov, Alim, 2023. "Rational biochar application rate for cotton nutrient content, growth, yields, productivity, and economic benefits under film-mulched trickle irrigation," Agricultural Water Management, Elsevier, vol. 276(C).
    11. Meng, Wenjie & Xing, Jinliang & Niu, Mu & Zuo, Qiang & Wu, Xun & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Optimizing fertigation schemes based on root distribution," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    14. Dunxian She & Jun Xia, 2018. "Copulas-Based Drought Characteristics Analysis and Risk Assessment across the Loess Plateau of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 547-564, January.
    15. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).
    16. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    3. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    5. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Ebtessam A. Youssef & Marwa M. Abdelbaset & Osama M. Dewedar & José Miguel Molina-Martínez & Ahmed F. El-Shafie, 2023. "Crop Coefficient Estimation and Effect of Abscisic Acid on Red Cabbage Plants ( Brassica oleracea var. Capitata) under Water-Stress Conditions," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    8. Hao, Baozhen & Ma, Jingli & Si, Shihua & Wang, Xiaojie & Wang, Shuli & Li, Fengmei & Jiang, Lina, 2024. "Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 298(C).
    9. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    10. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Qin, Shujing & Li, Sien & Cheng, Lei & Zhang, Lu & Qiu, Rangjian & Liu, Pan & Xi, Haiyang, 2023. "Partitioning evapotranspiration in partially mulched interplanted croplands by improving the Shuttleworth-Wallace model," Agricultural Water Management, Elsevier, vol. 276(C).
    13. McNamara, Ian & Flörke, Martina & Uschan, Thorben & Baez-Villanueva, Oscar M. & Herrmann, Frank, 2024. "Estimates of irrigation requirements throughout Germany under varying climatic conditions," Agricultural Water Management, Elsevier, vol. 291(C).
    14. Liu, Yu & Li, Shilei & Liu, Yanxin & Shen, Hongzheng & Huang, Tingting & Ma, Xiaoyi, 2023. "Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China," Agricultural Water Management, Elsevier, vol. 290(C).
    15. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Mashabatu, Munashe & Ntshidi, Zanele & Dzikiti, Sebinasi & Jovanovic, Nebojsa & Dube, Timothy & Taylor, Nicky J., 2023. "Deriving crop coefficients for evergreen and deciduous fruit orchards in South Africa using the fraction of vegetation cover and tree height data," Agricultural Water Management, Elsevier, vol. 286(C).
    18. Yang, Wenjia & Yan, Naitong & Zhang, Jiali & Yan, Jiakun & Ma, Dengke & Wang, Shiwen & Yin, Lina, 2022. "The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    20. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s0378377424002014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.