IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423005061.html
   My bibliography  Save this article

Estimates of irrigation requirements throughout Germany under varying climatic conditions

Author

Listed:
  • McNamara, Ian
  • Flörke, Martina
  • Uschan, Thorben
  • Baez-Villanueva, Oscar M.
  • Herrmann, Frank

Abstract

As climate change brings about hotter and often drier summers, an improved understanding of how irrigation requirements vary according to climatic conditions is of increasing importance. Within Germany, temperate conditions have historically enabled most agriculture to be supplied solely by green water, but recent crop yield reductions and crop failures have demonstrated its increased vulnerability to climatic conditions. The raster-based mGROWA hydrological water balance model was implemented over all agricultural areas in Germany for the period 1961–2020 at a high spatial (200 m) and temporal (daily) resolution. Grid-cells were each assigned one of 10 major crop classes, which account for 86.7 % of all agricultural areas in Germany, and effectively all irrigated areas. Using crop-specific irrigation rules that reflect actual practices, irrigation requirements were simulated for all crop areas. To investigate the relationship between climatic water balance over the crop growing season and irrigation requirements, the simulated annual irrigation requirements were compared with the standardised precipitation-evapotranspiration index (SPEI-6), calculated at the end of September. Through this comparison, irrigation requirements could be characterised for near-normal and dry conditions, and results were aggregated to the district level. Additionally, using district-level data on the areas with irrigation infrastructure, the actual water used for irrigation was estimated. The results highlight marked increases in irrigation requirements in dry conditions compared to near-normal conditions (median increase of 72 %), which are more pronounced over crops in silty soils than in sandy soils. The results also demonstrate how the increased irrigation requirements in dry years are in many cases higher than what is suggested by guidelines for irrigation management in Germany. This study provides important information for actors related to the agricultural sector and water management and is based on a robust and transferable framework to quantify how irrigation requirements vary according to climatic variability and local soil conditions.

Suggested Citation

  • McNamara, Ian & Flörke, Martina & Uschan, Thorben & Baez-Villanueva, Oscar M. & Herrmann, Frank, 2024. "Estimates of irrigation requirements throughout Germany under varying climatic conditions," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005061
    DOI: 10.1016/j.agwat.2023.108641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yue Zhang & Kai Huang & Yajuan Yu & Tingting Hu & Jing Wei, 2015. "Impact of climate change and drought regime on water footprint of crop production: the case of Lake Dianchi Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 549-566, October.
    2. ., 2023. "From national- to multi-level governance," Chapters, in: Rethinking Public Governance, chapter 8, pages 135-152, Edward Elgar Publishing.
    3. Niesr, 2023. "National Institute UK Economic Outlook Winter 2023," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 9, pages 4-5.
    4. Niesr, 2023. "National Institute Global Economic Outlook - Summary," National Institute Global Economic Outlook, National Institute of Economic and Social Research, issue 9, pages 4-5.
    5. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.
    6. Parsons, David J. & Rey, Dolores & Tanguy, Maliko & Holman, Ian P., 2019. "Regional variations in the link between drought indices and reported agricultural impacts of drought," Agricultural Systems, Elsevier, vol. 173(C), pages 119-129.
    7. Niesr, 2023. "National Institute Global Economic Outlook - Summary," National Institute Global Economic Outlook, National Institute of Economic and Social Research, vol. 0(9), pages 4-5.
    8. ., 2023. "The national treatment obligation," Chapters, in: The Law and Economics of International Trade Agreements, chapter 8, pages 193-218, Edward Elgar Publishing.
    9. Niesr, 2023. "National Institute UK Economic Outlook Spring 2023," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 10, pages 5-43.
    10. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Bernhardt, Jacob Jeff & Rolfes, Lennart & Kreins, Peter & Henseler, Martin, 2022. "Ermittlung des regionalen Bewässerungsbedarfs für die Landwirtschaft in Bayern," Thünen Report 321999, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    12. Qin, Nianxiu & Lu, Qinqin & Fu, Guobin & Wang, Junneng & Fei, Kai & Gao, Liang, 2023. "Assessing the drought impact on sugarcane yield based on crop water requirements and standardized precipitation evapotranspiration index," Agricultural Water Management, Elsevier, vol. 275(C).
    13. ., 2023. "Collective security and the United Nations," Chapters, in: International Conflict and Security Law, chapter 1, pages 11-35, Edward Elgar Publishing.
    14. Vassilios Pisinaras & Frank Herrmann & Andreas Panagopoulos & Evangelos Tziritis & Ian McNamara & Frank Wendland, 2023. "Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study," Sustainability, MDPI, vol. 15(5), pages 1-29, February.
    15. Niesr, 2023. "National Institute UK Economic Outlook Winter 2023," National Institute UK Economic Outlook, National Institute of Economic and Social Research, vol. 0(9), pages 4-5.
    16. Niesr, 2023. "National Institute Global Economic Outlook - Summary," National Institute Global Economic Outlook, National Institute of Economic and Social Research, issue 10, pages 4-5.
    17. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Lindley, Ben & Roulstone, Tony & Locatelli, Giorgio & Rooney, Matt, 2023. "Can fusion energy be cost-competitive and commercially viable? An analysis of magnetically confined reactors," Energy Policy, Elsevier, vol. 177(C).
    4. Mühlichen, Michael & Lerch, Mathias & Sauerberg, Markus & Grigoriev, Pavel, 2023. "Different health systems – Different mortality outcomes? Regional disparities in avoidable mortality across German-speaking Europe, 1992–2019," Social Science & Medicine, Elsevier, vol. 329(C).
    5. Ionuț NICA & Maria-Luiza CIOCAN, 2023. "Mapping circular pathways: a bibliometric exploration and Multilinear Regression Model of Romania's circular economy," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(637), W), pages 17-34, Winter.
    6. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Ebtessam A. Youssef & Marwa M. Abdelbaset & Osama M. Dewedar & José Miguel Molina-Martínez & Ahmed F. El-Shafie, 2023. "Crop Coefficient Estimation and Effect of Abscisic Acid on Red Cabbage Plants ( Brassica oleracea var. Capitata) under Water-Stress Conditions," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    8. Mashabatu, Munashe & Ntshidi, Zanele & Dzikiti, Sebinasi & Jovanovic, Nebojsa & Dube, Timothy & Taylor, Nicky J., 2023. "Deriving crop coefficients for evergreen and deciduous fruit orchards in South Africa using the fraction of vegetation cover and tree height data," Agricultural Water Management, Elsevier, vol. 286(C).
    9. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    13. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    14. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    15. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    16. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Qin, Shujing & Li, Sien & Cheng, Lei & Zhang, Lu & Qiu, Rangjian & Liu, Pan & Xi, Haiyang, 2023. "Partitioning evapotranspiration in partially mulched interplanted croplands by improving the Shuttleworth-Wallace model," Agricultural Water Management, Elsevier, vol. 276(C).
    18. Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Liebhard, Gunther & Klik, Andreas & Neugschwandtner, Reinhard W. & Nolz, Reinhard, 2022. "Effects of tillage systems on soil water distribution, crop development, and evaporation and transpiration rates of soybean," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.