IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423004079.html
   My bibliography  Save this article

Probabilistic climate risk assessment in rainfed wheat yield: Copula approach using water requirement satisfaction index

Author

Listed:
  • Khaledi-Alamdari, Mohammad
  • Majnooni-Heris, Abolfazl
  • Fakheri-Fard, Ahmad
  • Russo, Ana

Abstract

The trend of population growth and the consequent need to increase agricultural production in order to provide for the necessary food is critical topic nowadays. To account for the risks and damage caused by changes in weather and climate constrains, it is important to know how these changes affect the agricultural productivity. Wheat is the world's most widely grown crop and is directly related to worldwide food security issues. As a result, it has always been of interest to researchers as a strategic crop. In this study, the correlation of the Water Requirement Satisfaction Index in six growing periods of rainfed wheat with its yield was examined and found that the highest correlation is seen over the entire growing season. Based on statistical distributions and copula functions, the sensitivity and rainfed wheat yield to the Water Requirement Satisfaction Index was examined. Clayton Copula was selected based on AIC and RMSE evaluation indices. The probability of having crop losses is around 50%, in general. The results showed that the yield risk of rainfed wheat in the Tabriz region drops to 46% under low climatic risk conditions and reaches to 98% under medium and high climate risk conditions. The results allow farmers and stakeholders to better plan and manage food security by knowing the changes in rainfed wheat yield depending on weather conditions. By using different options under different conditions such as wet events, it is also possible to work towards higher yield amounts of rainfed wheat and other rainfed crops.

Suggested Citation

  • Khaledi-Alamdari, Mohammad & Majnooni-Heris, Abolfazl & Fakheri-Fard, Ahmad & Russo, Ana, 2023. "Probabilistic climate risk assessment in rainfed wheat yield: Copula approach using water requirement satisfaction index," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004079
    DOI: 10.1016/j.agwat.2023.108542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
    2. Zhang, Yaling & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Junqin & Zhan, Cun & Jiang, Shouzheng, 2022. "Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Silva, Vicente de P.R. & Campos, João H.B.C. & Silva, Madson T. & Azevedo, Pedro V., 2010. "Impact of global warming on cowpea bean cultivation in northeastern Brazil," Agricultural Water Management, Elsevier, vol. 97(11), pages 1760-1768, November.
    4. Philipp Arbenz, 2013. "Bayesian Copulae Distributions, with Application to Operational Risk Management—Some Comments," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 105-108, March.
    5. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    6. Ribeiro, Andreia F.S. & Russo, Ana & Gouveia, Célia M. & Páscoa, Patrícia, 2019. "Copula-based agricultural drought risk of rainfed cropping systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. J. Shiau, 2006. "Fitting Drought Duration and Severity with Two-Dimensional Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 795-815, October.
    8. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    9. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    10. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    11. Barry K. Goodwin & Ashley Hungerford, 2015. "Copula-Based Models of Systemic Risk in U.S. Agriculture: Implications for Crop Insurance and Reinsurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 879-896.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    2. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    4. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    6. Martínez-Salgueiro, Andrea & Tarrazón-Rodón, María-Antonia, 2020. "Is diversification effective in reducing the systemic risk implied by a market for weather index-based insurance in Spain?," MPRA Paper 119924, University Library of Munich, Germany, revised 19 May 2021.
    7. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    8. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    9. Ceballos, Francisco, 2016. "Estimating spatial basis risk in rainfall index insurance: Methodology and application to excess rainfall insurance in Uruguay," IFPRI discussion papers 1595, International Food Policy Research Institute (IFPRI).
    10. Awondo, Sebastain N., 2019. "Efficiency of region-wide catastrophic weather risk pools: Implications for African Risk Capacity insurance program," Journal of Development Economics, Elsevier, vol. 136(C), pages 111-118.
    11. Xuche Gong & David A. Hennessy & Hongli Feng, 2023. "Systemic risk, relative subsidy rates, and area yield insurance choice," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 888-913, May.
    12. Jun Yin & Zhe Yuan & Ting Li, 2021. "The Spatial-Temporal Variation Characteristics of Natural Vegetation Drought in the Yangtze River Source Region, China," IJERPH, MDPI, vol. 18(4), pages 1-24, February.
    13. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    14. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Kumar, Ronald Ravinesh & Mensi, Walid, 2017. "Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 310-324.
    15. Dimitrios Panagiotou & Athanassios Stavrakoudis, 2023. "Price dependence among the major EU extra virgin olive oil markets: a time scale analysis," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(1), pages 1-26, March.
    16. Basteck, Christian & Daniëls, Tijmen R., 2011. "Every symmetric 3×3 global game of strategic complementarities has noise-independent selection," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 749-754.
    17. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    18. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    19. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    20. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.