IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i15p4287-4306.html
   My bibliography  Save this article

Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts

Author

Listed:
  • Ali Tabrizi
  • Davar Khalili
  • Ali Kamgar-Haghighi
  • Shahrokh Zand-Parsa

Abstract

Complexities of streamflow drought analyses motivate utilization of simple, alternative methods, which can provide timely information for effective water resources management. For this purpose time-based meteorological drought characteristics, identified by SPI 3 − month , SPI 6 − month and SPI Anuual are investigated. A boxplot approach is used to exclude non-rainy months from the analysis. Streamflow drought characteristics are described by drought intensities, and are calculated by the threshold level method. The non-parametric Wilcoxon–Mann–Whitney test is used to investigate relations between streamflow drought intensities and SPI 3 − month , SPI 6 − month and SPI Anuual . The study area is the Doroodzan Watershed and Reservoir in southwestern Iran, with four rain gauge and two hydrometric stations. According to the results, most of time-based SPI values show significant relations (at 5% level of significance) with streamflow drought intensities. However, the most significant relation is between SPI Anuual of Jamalbeik rain gauge station (centrally located in the study area) and drought intensities of Chamriz hydrometric station (located at the reservoir inlet). Comparison of study results with available records of documented droughts, confirms applicability of the proposed procedures. The SPI Anuual is based on one-year-ahead moving average rainfalls. Then, SPI Anuual of Jamalbeik station can be used to investigate occurrence of streamflow drought in Chamriz hydrometric station. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Ali Tabrizi & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2010. "Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4287-4306, December.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:15:p:4287-4306
    DOI: 10.1007/s11269-010-9659-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9659-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9659-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong Wu & Leen-Kiat Soh & Ashok Samal & Xun-Hong Chen, 2008. "Trend Analysis of Streamflow Drought Events in Nebraska," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 145-164, February.
    2. R. Pandey & S. Mishra & Ranvir Singh & K. Ramasastri, 2008. "Streamflow Drought Severity Analysis of Betwa River System (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1127-1141, August.
    3. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    4. Desalegn Edossa & Mukand Babel & Ashim Das Gupta, 2010. "Drought Analysis in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1441-1460, May.
    5. Tayeb Raziei & Bahram Saghafian & Ana Paulo & Luis Pereira & Isabella Bordi, 2009. "Spatial Patterns and Temporal Variability of Drought in Western Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 439-455, February.
    6. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    2. Arash Modaresi Rad & Davar Khalili, 2015. "Appropriateness of Clustered Raingauge Stations for Spatio-Temporal Meteorological Drought Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4157-4171, September.
    3. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    4. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    5. Zhang, Yaling & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Junqin & Zhan, Cun & Jiang, Shouzheng, 2022. "Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Jinping Zhang & Yong Zhao & Weihua Xiao, 2014. "Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5543-5553, December.
    7. Seyed Banimahd & Davar Khalili, 2013. "Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3911-3928, September.
    8. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    9. Kozek Malwina & Tomaszewski Edmund, 2022. "Dynamics of hydrological droughts propagation in mountainous catchments," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(2), pages 111-124, April.
    10. Davar Khalili & Tohid Farnoud & Hamed Jamshidi & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2011. "Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1737-1757, April.
    11. Muhammad Nouman Sattar & Jin-Young Lee & Ji-Yae Shin & Tae-Woong Kim, 2019. "Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2439-2452, May.
    12. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Mohammad Reza Mahmoudi, 2016. "Parametric and Non-Parametric Trend of Drought in Arid and Semi-Arid Regions Using RDI Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5479-5500, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    2. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    3. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    4. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    5. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    6. Hossein Tabari & Jaefar Nikbakht & P. Hosseinzadeh Talaee, 2013. "Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 137-151, January.
    7. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    8. Davar Khalili & Tohid Farnoud & Hamed Jamshidi & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2011. "Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1737-1757, April.
    9. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    10. U. Surendran & B. Anagha & P. Raja & V. Kumar & K. Rajan & M. Jayakumar, 2019. "Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1521-1540, March.
    11. G. Tsakiris & I. Nalbantis & H. Vangelis & B. Verbeiren & M. Huysmans & B. Tychon & I. Jacquemin & F. Canters & S. Vanderhaegen & G. Engelen & L. Poelmans & P. Becker & O. Batelaan, 2013. "A System-based Paradigm of Drought Analysis for Operational Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5281-5297, December.
    12. Gideon A. Nnaji & Clayton J. Clark & Amy B. Chan-Hilton & Wenrui Huang, 2016. "Drought prediction in Apalachicola–Chattahoochee–Flint River Basin using a semi-Markov model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 267-297, May.
    13. Pravat Jena & K. S. Kasiviswanathan & Sarita Azad, 2020. "Spatiotemporal characteristics of extreme droughts and their association with sea surface temperature over the Cauvery River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2239-2259, December.
    14. João Santos & Maria Portela & Inmaculada Pulido-Calvo, 2011. "Regional Frequency Analysis of Droughts in Portugal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3537-3558, November.
    15. Fernando Oñate-Valdivieso & Veronica Uchuari & Arianna Oñate-Paladines, 2020. "Large-Scale Climate Variability Patterns and Drought: A Case of Study in South – America," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2061-2079, April.
    16. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    17. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    18. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    19. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    20. Nadjib Haied & Atif Foufou & Samira Khadri & Adel Boussaid & Mohamed Azlaoui & Nabil Bougherira, 2023. "Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices," Sustainability, MDPI, vol. 15(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:15:p:4287-4306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.