IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v29y2020i5p1354-1371.html
   My bibliography  Save this article

Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems

Author

Listed:
  • Sergey Naumov
  • David R. Keith
  • Charles H. Fine

Abstract

Automated vehicles (AVs) have emerged rapidly in recent years, becoming a focus of high expectations and heated debates. Advocates argue that the arrival of AVs will make driving safer, greener, cheaper, and faster, bringing ubiquitous access to transportation while significantly reducing traffic congestion and environmental impacts. Skeptics, in contrast, suggest that the appeal of AVs will induce additional driving, offsetting or even overwhelming the positive effects of increased automation. Many analysts now believe that the solution lies in ensuring that most vehicle trips are shared to serve the same number of passenger miles with fewer vehicle miles, reducing traffic congestion. However, these analyses fail to recognize that reducing congestion will induce yet more demand for driving and attract riders from other transportation modes including public transit, which is already experiencing falling ridership in many cities. In this study, we explore the impact of AVs and pooling on consumer mode choice and the effect on the performance of both road and public transit systems. We show that the well‐intentioned move to promote pooling may have the unintended consequence of triggering a public transit death spiral, leading to both worse public transit quality and more rather than less traffic congestion. We argue that the deployment of AVs and pooling can be effective at accelerating the transition to sustainable urban mobility, but only when accompanied by policies that make driving less attractive, not more.

Suggested Citation

  • Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
  • Handle: RePEc:bla:popmgt:v:29:y:2020:i:5:p:1354-1371
    DOI: 10.1111/poms.13166
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13166
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    2. Scheiner, Joachim, 2010. "Interrelations between travel mode choice and trip distance: trends in Germany 1976–2002," Journal of Transport Geography, Elsevier, vol. 18(1), pages 75-84.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, October.
    4. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    5. Edward G. Anderson, 2019. "Applying Sterman's proposed principles of modeling rigor to hybrid models combining multiple simulation methods," System Dynamics Review, System Dynamics Society, vol. 35(1), pages 8-14, January.
    6. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    7. Mustapha Harb & Yu Xiao & Giovanni Circella & Patricia L. Mokhtarian & Joan L. Walker, 2018. "Projecting travelers into a world of self-driving vehicles: estimating travel behavior implications via a naturalistic experiment," Transportation, Springer, vol. 45(6), pages 1671-1685, November.
    8. Lawrence D. Burns, 2013. "A vision of our transport future," Nature, Nature, vol. 497(7448), pages 181-182, May.
    9. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    10. Andrew Ford, 2018. "Simulating systems with fast and slow dynamics: lessons from the electric power industry," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 222-254, January.
    11. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    12. David R. Keith & John D. Sterman & Jeroen Struben, 2017. "Supply constraints and waitlists in new product diffusion," Post-Print hal-02312141, HAL.
    13. Aly Elmasry & Andreas Größler, 2018. "Supply chain modularity in system dynamics," System Dynamics Review, System Dynamics Society, vol. 34(3), pages 462-476, June.
    14. Daniel Freund & Shane G. Henderson & David B. Shmoys, 2018. "Minimizing Multimodular Functions and Allocating Capacity in Bike‐Sharing Systems," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2346-2349, December.
    15. David R. Keith & John D. Sterman & Jeroen Struben, 2017. "Supply constraints and waitlists in new product diffusion," System Dynamics Review, System Dynamics Society, vol. 33(3-4), pages 254-279, July.
    16. Sumantran, Venkat & Fine, Charles & Gonsalvez, David, 2017. "Faster, Smarter, Greener: The Future of the Car and Urban Mobility," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262036665, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    2. Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    3. Rubén Michael Rodríguez‐González & Gonzalo Maldonado‐Guzman & Antonia Madrid‐Guijarro, 2022. "The effect of green strategies and eco‐innovation on Mexican automotive industry sustainable and financial performance: Sustainable supply chains as a mediating variable," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(4), pages 779-794, July.
    4. Swain, Ritwik & Truelove, Verity & Rakotonirainy, Andry & Kaye, Sherrie-Anne, 2023. "A comparison of the views of experts and the public on automated vehicles technologies and societal implications," Technology in Society, Elsevier, vol. 74(C).
    5. Fan Zeng & Chris Kwan Yu Lo & Stacy Hyun Nam Lee, 2021. "Will Communication of Job Creation Facilitate Diffusion of Innovations in the Automobile Industry?," Sustainability, MDPI, vol. 14(1), pages 1-22, December.
    6. Zwick, Felix & Axhausen, Kay W., 2022. "Ride-pooling demand prediction: A spatiotemporal assessment in Germany," Journal of Transport Geography, Elsevier, vol. 100(C).
    7. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    8. Sunil Mithas & Zhi‐Long Chen & Terence J.V. Saldanha & Alysson De Oliveira Silveira, 2022. "How will artificial intelligence and Industry 4.0 emerging technologies transform operations management?," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4475-4487, December.
    9. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    10. Lan Lu & Zheng Zhu & Pengfei Guo & Qiao‐Chu He, 2022. "Service Operations for Mixed Autonomous Paradigm: Lane Design and Subsidy," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1595-1612, April.
    11. Yang Pan & Liangfei Qiu, 2022. "How Ride‐Sharing Is Shaping Public Transit System: A Counterfactual Estimator Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 906-927, March.
    12. Gökçe Esenduran & John V. Gray & Burcu Tan, 2022. "A Dynamic Analysis of Supply Chain Risk Management and Extended Payment Terms," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1394-1417, March.
    13. Sergey Naumov & David Keith, 2023. "Optimizing the economic and environmental benefits of ride‐hailing and pooling," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 904-929, March.
    14. Zenan Zhou & Xiang Wan, 2022. "Does the Sharing Economy Technology Disrupt Incumbents? Exploring the Influences of Mobile Digital Freight Matching Platforms on Road Freight Logistics Firms," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 117-137, January.
    15. Keith, David R. & Naumov, Sergey & Rakoff, Hannah E. & Sanches, Lars Meyer & Singh, Anuraag, 2024. "The effect of increasing vehicle utilization on the automotive industry," European Journal of Operational Research, Elsevier, vol. 317(3), pages 776-792.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Sergey Naumov & David Keith, 2023. "Optimizing the economic and environmental benefits of ride‐hailing and pooling," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 904-929, March.
    3. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    4. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.
    5. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    6. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    7. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    8. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    9. Ahmed, Tanjeeb & Hyland, Michael & Sarma, Navjyoth J.S. & Mitra, Suman & Ghaffar, Arash, 2020. "Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 221-247.
    10. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    11. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    12. Gilles Duranton & Geetika Nagpal & Matthew A. Turner, 2020. "Transportation Infrastructure in the US," NBER Chapters, in: Economic Analysis and Infrastructure Investment, pages 165-210, National Bureau of Economic Research, Inc.
    13. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Alberini, Anna & Ščasný, Milan & Bigano, Andrea, 2018. "Policy- v. individual heterogeneity in the benefits of climate change mitigation: Evidence from a stated-preference survey," Energy Policy, Elsevier, vol. 121(C), pages 565-575.
    15. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    16. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    17. Zhou, Fan & Zheng, Zuduo & Whitehead, Jake & Washington, Simon & Perrons, Robert K. & Page, Lionel, 2020. "Preference heterogeneity in mode choice for car-sharing and shared automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 633-650.
    18. Dilshad Mohammed & Balázs Horváth, 2023. "Travel Demand Increment Due to the Use of Autonomous Vehicles," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    19. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.
    20. Christina Pakusch & Gunnar Stevens & Alexander Boden & Paul Bossauer, 2018. "Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future," Sustainability, MDPI, vol. 10(7), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:29:y:2020:i:5:p:1354-1371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.