IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i4p1595-1612.html
   My bibliography  Save this article

Service Operations for Mixed Autonomous Paradigm: Lane Design and Subsidy

Author

Listed:
  • Lan Lu
  • Zheng Zhu
  • Pengfei Guo
  • Qiao‐Chu He

Abstract

This study aims to examine and design operational strategies for mixed flows of autonomous vehicles (AVs) and human‐driven vehicles (HVs). We propose a stylized model wherein utilitarian individuals either drive HVs or take privately operated AVs that are collectively dispatched. In the baseline mixed policy where AVs and HVs share the same lanes, we find that AVs under‐join the traffic (queue) while HVs over‐join. We identify a “crowding‐out effect” such that AVs will tend to mitigate the over‐joining HVs and reduce overall congestion/throughput. To improve the traffic efficiency of the baseline mixed policy, we consider a fully dedicated policy in which both AVs and HVs are segregated to different lanes and a partially dedicated policy in which only AVs enjoy dedicated lanes. We find that dedicated policies outperform the mixed policy in both social welfare and the aggregate throughput when the platooning effect is moderate or strong. Exact conditions are derived for the selection of fully dedicated policy and partially dedicated policy. Furthermore, we find that a carefully designed subsidy is necessary for the dedicated policy to simultaneously improve the social welfare and the throughput when the platooning effect is very weak. These results shed interesting light on the policy regulation for the emerging mixed autonomous paradigm: a dedicated policy with proper lane design and subsidy (if necessary) will improve both social welfare and aggregate throughput.

Suggested Citation

  • Lan Lu & Zheng Zhu & Pengfei Guo & Qiao‐Chu He, 2022. "Service Operations for Mixed Autonomous Paradigm: Lane Design and Subsidy," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1595-1612, April.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:4:p:1595-1612
    DOI: 10.1111/poms.13633
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13633
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    2. Uri Yechiali, 1971. "On Optimal Balking Rules and Toll Charges in the GI / M /1 Queuing Process," Operations Research, INFORMS, vol. 19(2), pages 349-370, April.
    3. Guo, Pengfei & Hassin, Refael, 2012. "Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers," European Journal of Operational Research, Elsevier, vol. 222(2), pages 278-286.
    4. Dirk Heidemann, 2001. "A Queueing Theory Model of Nonstationary Traffic Flow," Transportation Science, INFORMS, vol. 35(4), pages 405-412, November.
    5. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    6. Luo, Qi & Saigal, Romesh & Chen, Zhibin & Yin, Yafeng, 2019. "Accelerating the adoption of automated vehicles by subsidies: A dynamic games approach," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 226-243.
    7. Yang, Hai & Yang, Teng, 2011. "Equilibrium properties of taxi markets with search frictions," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 696-713, May.
    8. Rajat Jain & J. Macgregor Smith, 1997. "Modeling Vehicular Traffic Flow using M/G/C/C State Dependent Queueing Models," Transportation Science, INFORMS, vol. 31(4), pages 324-336, November.
    9. Liu, Yixuan & Whinston, Andrew B., 2019. "Efficient real-time routing for autonomous vehicles through Bayes correlated equilibrium: An information design framework," Information Economics and Policy, Elsevier, vol. 47(C), pages 14-26.
    10. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    11. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    12. Hossein Abouee‐Mehrizi & Opher Baron & Oded Berman & David Chen, 2021. "Adoption of Electric Vehicles in Car Sharing Market," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 190-209, January.
    13. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    14. Zan Zhang & Guofang Nan & Yong Tan, 2020. "Cloud Services vs. On-Premises Software: Competition Under Security Risk and Product Customization," Information Systems Research, INFORMS, vol. 31(3), pages 848-864, September.
    15. Pengfei Guo & Refael Hassin, 2011. "Strategic Behavior and Social Optimization in Markovian Vacation Queues," Operations Research, INFORMS, vol. 59(4), pages 986-997, August.
    16. Mohammad Ebrahim Arbabian & Shi Chen & Kamran Moinzadeh, 2021. "Capacity Expansions with Bundled Supplies of Attributes: An Application to Server Procurement in Cloud Computing," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 191-209, 1-2.
    17. Hani S. Mahmassani, 2016. "50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations," Transportation Science, INFORMS, vol. 50(4), pages 1140-1162, November.
    18. Hassin, Refael, 1986. "Consumer Information in Markets with Random Product Quality: The Case of Queues and Balking," Econometrica, Econometric Society, vol. 54(5), pages 1185-1195, September.
    19. Uri Yechiali, 1972. "Customers' Optimal Joining Rules for the GI/M/s Queue," Management Science, INFORMS, vol. 18(7), pages 434-443, March.
    20. Edelson, Noel M & Hildebrand, David K, 1975. "Congestion Tolls for Poisson Queuing Processes," Econometrica, Econometric Society, vol. 43(1), pages 81-92, January.
    21. Shi Chen & Hau Lee & Kamran Moinzadeh, 2019. "Pricing Schemes in Cloud Computing: Utilization‐Based vs. Reservation‐Based," Production and Operations Management, Production and Operations Management Society, vol. 28(1), pages 82-102, January.
    22. Abhijeet Ghoshal & Subodha Kumar & Vijay Mookerjee, 2020. "Dilemma of Data Sharing Alliance: When Do Competing Personalizing and Non‐Personalizing Firms Share Data," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1918-1936, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhe George & Yin, Xiaoling, 2021. "Information and pricing effects in two-tier public service systems," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Shone, Rob & Knight, Vincent A. & Williams, Janet E., 2013. "Comparisons between observable and unobservable M/M/1 queues with respect to optimal customer behavior," European Journal of Operational Research, Elsevier, vol. 227(1), pages 133-141.
    3. Ziani, Sofiane & Rahmoune, Fazia & Radjef, Mohammed Said, 2015. "Customers’ strategic behavior in batch arrivals M2/M/1 queue," European Journal of Operational Research, Elsevier, vol. 247(3), pages 895-903.
    4. Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
    5. Canbolat, Pelin G., 2020. "Bounded rationality in clearing service systems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 614-626.
    6. Refael Hassin & Ricky Roet-Green, 2017. "The Impact of Inspection Cost on Equilibrium, Revenue, and Social Welfare in a Single-Server Queue," Operations Research, INFORMS, vol. 65(3), pages 804-820, June.
    7. Lingjiao Zhang & Jinting Wang & Yilin Wang, 2023. "Strategic Behavior and Optimization of an M/M/1 Queue with N-Policy and Hysteretic Control," Methodology and Computing in Applied Probability, Springer, vol. 25(4), pages 1-29, December.
    8. Gopinath Panda & Veena Goswami & Abhijit Datta Banik, 2016. "Equilibrium and Socially Optimal Balking Strategies in Markovian Queues with Vacations and Sequential Abandonment," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-34, October.
    9. Wang, Jinting & Zhang, Feng, 2013. "Strategic joining in M/M/1 retrial queues," European Journal of Operational Research, Elsevier, vol. 230(1), pages 76-87.
    10. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    11. Tingliang Huang & Gad Allon & Achal Bassamboo, 2013. "Bounded Rationality in Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 263-279, May.
    12. Opher Baron & Antonis Economou & Athanasia Manou, 2022. "Increasing social welfare with delays: Strategic customers in the M/G/1 orbit queue," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2907-2924, July.
    13. Zhang, Xiang & Sun, Haojie & Pei, Xiaoyang & Guan, Linghui & Wang, Zihao, 2024. "Evolution of technology investment and development of robotaxi services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    14. Bountali, Olga & Economou, Antonis, 2017. "Equilibrium joining strategies in batch service queueing systems," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1142-1151.
    15. Xianyue Shi & Liwei Liu, 2023. "Equilibrium Joining Strategies in the Retrial Queue with Two Classes of Customers and Delayed Vacations," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-27, June.
    16. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    17. Qingqing Ma & Yiqiang Q. Zhao & Weiqi Liu & Jihong Li, 2019. "Customer Strategic Joining Behavior in Markovian Queues with Working Vacations and Vacation Interruptions Under Bernoulli Schedule," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-26, February.
    18. van Ackere, Ann, 1996. "The management of congestion," European Journal of Operational Research, Elsevier, vol. 89(2), pages 223-225, March.
    19. Zhen Wang & Liwei Liu & Yiqiang Q. Zhao, 2022. "Equilibrium customer and socially optimal balking strategies in a constant retrial queue with multiple vacations and N-policy," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 870-908, May.
    20. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:4:p:1595-1612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.