IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v317y2024i3p776-792.html
   My bibliography  Save this article

The effect of increasing vehicle utilization on the automotive industry

Author

Listed:
  • Keith, David R.
  • Naumov, Sergey
  • Rakoff, Hannah E.
  • Sanches, Lars Meyer
  • Singh, Anuraag

Abstract

Shared mobility is widely expected to play an important role in the future of transportation. Sharing vehicles (using services such as ride-hailing, peer-to-peer car-sharing, and autonomous taxis) will allow people to enjoy the benefits of automobile use without ownership, access various types of mobility services on-demand, and create value by increasing the utilization of these expensive and durable assets. Most analysts agree that widespread adoption of shared mobility would cause the size of the on-road automobile fleet to shrink, potentially dramatically, because the same amount of personal mobility can be provided by fewer vehicles. There is less agreement, however, on the effect higher utilization will have on the rate of new vehicle sales: some believe that vehicle sales will fall similarly, while others believe there will be no change in sales, or even an increase in sales as fleets of shared vehicles turn over more frequently. In this paper, we seek to clarify the effect that emerging mobility technologies will have on the future rate of new vehicle sales in the United States, modeling how the sales rate varies with factors such as population growth, vehicle utilization, and vehicle durability. We show across a range of plausible scenarios that vehicle sales are likely to remain steady or increase in coming decades. However, the potential exists for a temporary surge or dip in sales as the composition of new vehicle sales transitions, requiring effective mental models if managers are to make efficient production and capacity planning decisions during this time.

Suggested Citation

  • Keith, David R. & Naumov, Sergey & Rakoff, Hannah E. & Sanches, Lars Meyer & Singh, Anuraag, 2024. "The effect of increasing vehicle utilization on the automotive industry," European Journal of Operational Research, Elsevier, vol. 317(3), pages 776-792.
  • Handle: RePEc:eee:ejores:v:317:y:2024:i:3:p:776-792
    DOI: 10.1016/j.ejor.2022.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin Tian & Baojun Jiang & Yifan Xu, 2021. "Manufacturer’s Entry in the Product-Sharing Market," Manufacturing & Service Operations Management, INFORMS, vol. 23(3), pages 553-568, May.
    2. Fernando F. Suárez & James M. Utterback, 1995. "Dominant designs and the survival of firms," Strategic Management Journal, Wiley Blackwell, vol. 16(6), pages 415-430.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Stylianos Kavadias & Karl T. Ulrich, 2020. "Innovation and New Product Development: Reflections and Insights from the Research Published in the First 20 Years of Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 84-92, January.
    5. Yan, Pengyu & Lee, Chung-Yee & Chu, Chengbin & Chen, Cynthia & Luo, Zhiqin, 2021. "Matching and pricing in ride-sharing: Optimality, stability, and financial sustainability," Omega, Elsevier, vol. 102(C).
    6. Nikhil Garg & Hamid Nazerzadeh, 2019. "Driver Surge Pricing," Papers 1905.07544, arXiv.org, revised Mar 2021.
    7. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    8. Terry A. Taylor, 2018. "On-Demand Service Platforms," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 704-720, October.
    9. Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
    10. Maurizio Zollo, 2009. "Superstitious Learning with Rare Strategic Decisions: Theory and Evidence from Corporate Acquisitions," Organization Science, INFORMS, vol. 20(5), pages 894-908, October.
    11. Mi Diao & Hui Kong & Jinhua Zhao, 2021. "Impacts of transportation network companies on urban mobility," Nature Sustainability, Nature, vol. 4(6), pages 494-500, June.
    12. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    13. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    14. Alberini, Anna & Harrington, Winston & McConnell, Virginia D., 1998. "Fleet Turnover and Old Car Scrap Policies," Discussion Papers 10897, Resources for the Future.
    15. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    16. Maxim Engers & Monica Hartmann & Steven Stern, 2009. "Annual miles drive used car prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 1-33.
    17. Teck-Hua Ho & Sergei Savin & Christian Terwiesch, 2002. "Managing Demand and Sales Dynamics in New Product Diffusion Under Supply Constraint," Management Science, INFORMS, vol. 48(2), pages 187-206, February.
    18. Henao, Alejandro & Marshall, Wesley E., 2019. "An analysis of the individual economics of ride-hailing drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 440-451.
    19. Mengshi Lu & Zhihao Chen & Siqian Shen, 2018. "Optimizing the Profitability and Quality of Service in Carshare Systems Under Demand Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 162-180, May.
    20. Amiya K. Chakravarty, 2021. "Blending Capacity on a Rideshare Platform: Independent and Dedicated Drivers," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2522-2546, August.
    21. Zhong, Yuanguang & Lin, Zhaozhan & Zhou, Yong-Wu & Cheng, T.C.E. & Lin, Xiaogang, 2019. "Matching supply and demand on ride-sharing platforms with permanent agents and competition," International Journal of Production Economics, Elsevier, vol. 218(C), pages 363-374.
    22. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    23. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    24. Sun, Hao & Wang, Hai & Wan, Zhixi, 2019. "Model and analysis of labor supply for ride-sharing platforms in the presence of sample self-selection and endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 76-93.
    25. Nunes, Ashley & Hernandez, Kristen D., 2020. "Autonomous taxis & public health: High cost or high opportunity cost?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 28-36.
    26. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Naumov & David Keith, 2023. "Optimizing the economic and environmental benefits of ride‐hailing and pooling," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 904-929, March.
    2. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    3. Ke, Jintao & Li, Xinwei & Yang, Hai & Yin, Yafeng, 2021. "Pareto-efficient solutions and regulations of congested ride-sourcing markets with heterogeneous demand and supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Dong, Tingting & Xu, Zhengtian & Luo, Qi & Yin, Yafeng & Wang, Jian & Ye, Jieping, 2021. "Optimal contract design for ride-sourcing services under dual sourcing," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 289-313.
    5. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    6. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    7. Hu, Xinru & Zhou, Shuiyin & Luo, Xiaomeng & Li, Jianbin & Zhang, Chi, 2024. "Optimal pricing strategy of an on-demand platform with cross-regional passengers," Omega, Elsevier, vol. 122(C).
    8. Zhu, Zheng & Xu, Ailing & He, Qiao-Chu & Yang, Hai, 2021. "Competition between the transportation network company and the government with subsidies to public transit riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Zhong, Yuanguang & Lan, Yibo & Chen, Zhi & Yang, Jiazi, 2023. "On-demand ride-hailing platforms with heterogeneous quality-sensitive customers: Dedicated system or pooling system?," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 247-266.
    10. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    11. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    12. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    13. Gopalakrishnan, S. & Damanpour, F., 1997. "A review of innovation research in economics, sociology and technology management," Omega, Elsevier, vol. 25(1), pages 15-28, February.
    14. Li, Xiaonan & Li, Xiangyong & Wang, Hai & Shi, Junxin & Aneja, Y.P., 2022. "Supply regulation under the exclusion policy in a ride-sourcing market," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 69-94.
    15. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
    16. Lei, Zengxiang & Ukkusuri, Satish V., 2023. "Scalable reinforcement learning approaches for dynamic pricing in ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    17. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    18. Yang, Jie & Zhao, Daozhi & Wang, Zeyu & Xu, Chunqiu, 2022. "Impact of regulation on on-demand ride-sharing service: Profit-based target vs demand-based target," Research in Transportation Economics, Elsevier, vol. 92(C).
    19. Nie, Fapeng & Li, Xiang & Zhou, Chang, 2024. "Impact of privacy regulation involving information collection on the ride-hailing market," Omega, Elsevier, vol. 126(C).
    20. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:317:y:2024:i:3:p:776-792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.