IDEAS home Printed from https://ideas.repec.org/a/bla/sysdyn/v34y2018i1-2p222-254.html
   My bibliography  Save this article

Simulating systems with fast and slow dynamics: lessons from the electric power industry

Author

Listed:
  • Andrew Ford

Abstract

Complex systems exhibit dynamics across multiple timescales. Strong couplings across timescales can be important, but common practice has been to ignore the couplings. This paper describes my experience modeling electric power systems when clients argued for models including both fast and slow dynamics. Their goals were realism, transparency for policymakers and fast simulations to enable policy design and sensitivity analysis in live workshop settings. I describe different methods developed to meet these needs using five modeling studies conducted over three decades. The studies focused on important policy issues, which are described for context. I summarize the strengths and weaknesses of each method, with emphasis on their applicability beyond the power industry. The paper concludes with an endorsement of a coupled system with a stand‐alone model of fast dynamics to support the design of the long‐term model. The appendices provide details to help those interested in applying the methods. Copyright © 2018 System Dynamics Society

Suggested Citation

  • Andrew Ford, 2018. "Simulating systems with fast and slow dynamics: lessons from the electric power industry," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 222-254, January.
  • Handle: RePEc:bla:sysdyn:v:34:y:2018:i:1-2:p:222-254
    DOI: 10.1002/sdr.1595
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sdr.1595
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sdr.1595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ford, Andrew, 1994. "Electric vehicles and the electric utility company," Energy Policy, Elsevier, vol. 22(7), pages 555-570, July.
    2. Ford, Andrew, 2008. "Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system," Energy Policy, Elsevier, vol. 36(1), pages 443-455, January.
    3. Ford, Andrew, 2001. "Waiting for the boom: : a simulation study of power plant construction in California," Energy Policy, Elsevier, vol. 29(11), pages 847-869, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Aspinall & Michele Staiano & Diane Pearson, 2021. "Emergent Properties of Land Systems: Nonlinear Dynamics of Scottish Farming Systems from 1867 to 2020," Land, MDPI, vol. 10(11), pages 1-27, November.
    2. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    3. John Sterman, 2018. "System dynamics at sixty: the path forward," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 5-47, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saysel, Ali Kerem & Hekimoğlu, Mustafa, 2013. "Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach," Energy Policy, Elsevier, vol. 60(C), pages 675-686.
    2. Tian, Lixin & Jin, Rulei, 2012. "Theoretical exploration of carbon emissions dynamic evolutionary system and evolutionary scenario analysis," Energy, Elsevier, vol. 40(1), pages 376-386.
    3. Arango, Santiago & Larsen, Erik, 2011. "Cycles in deregulated electricity markets: Empirical evidence from two decades," Energy Policy, Elsevier, vol. 39(5), pages 2457-2466, May.
    4. Arango, Santiago & Dyner, Isaac & Larsen, Erik R., 2006. "Lessons from deregulation: Understanding electricity markets in South America," Utilities Policy, Elsevier, vol. 14(3), pages 196-207, September.
    5. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    6. Teufel, Felix & Miller, Michael & Genoese, Massimo & Fichtner, Wolf, 2013. "Review of System Dynamics models for electricity market simulations," Working Paper Series in Production and Energy 2, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    8. Marie Petitet, Dominique Finon, and Tanguy Janssen, 2016. "Carbon Price instead of Support Schemes: Wind Power Investments by the Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.
    10. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    11. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2013. "International experience on incentive program in support of fuel economy standards and labelling for motor vehicle: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 18-33.
    12. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2013. "Dynamic analysis of various investment incentives and regional capacity assignment in Iranian electricity market," Energy Policy, Elsevier, vol. 56(C), pages 271-284.
    13. Marek Kočan, 2008. "Cyclic behavior in dynamic investment decisions for deregulated energy markets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(1), pages 67-78, March.
    14. Hasani, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic assessment of capacity investment in electricity market considering complementary capacity mechanisms," Energy, Elsevier, vol. 36(1), pages 277-293.
    15. Yücel, Gönenç & van Daalen, Cornelia, 2012. "A simulation-based analysis of transition pathways for the Dutch electricity system," Energy Policy, Elsevier, vol. 42(C), pages 557-568.
    16. Ackerman, Frank & Fisher, Jeremy, 2013. "Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States," Energy Policy, Elsevier, vol. 59(C), pages 235-241.
    17. Andrew Ford, 2002. "Boom and Bust in Power Plant Construction: Lessons from the California Electricity Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 59-74, June.
    18. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic model for market-based capacity investment decision considering stochastic characteristic of wind power," Renewable Energy, Elsevier, vol. 36(8), pages 2205-2219.
    19. Ottie Nabors & George Backus & Jeff Amlin, 2002. "Simulating Effects of Business Decisions on Regional Economy Experience During the California Energy Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 143-158, June.
    20. Bandyopadhyay, Rubenka & Patiño-Echeverri, Dalia, 2016. "An alternate wind power integration mechanism: Coal plants with flexible amine-based CCS," Renewable Energy, Elsevier, vol. 85(C), pages 704-713.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:sysdyn:v:34:y:2018:i:1-2:p:222-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0883-7066 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.