IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10828-d902148.html
   My bibliography  Save this article

Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case

Author

Listed:
  • Liliana Andrei

    (Faculty of Civil, Industrial and Agricultural Engineering, Technical University of Civil Engineering, 020396 Bucharest, Romania)

  • Oana Luca

    (Faculty of Civil, Industrial and Agricultural Engineering, Technical University of Civil Engineering, 020396 Bucharest, Romania)

  • Florian Gaman

    (Faculty of Civil, Industrial and Agricultural Engineering, Technical University of Civil Engineering, 020396 Bucharest, Romania)

Abstract

New transport technologies, such as autonomous vehicles, are increasingly discussed in the debate on the transition to a sustainable urban future. Automated vehicles (AVs) are expected to reduce the value of travel time (VoT), allowing the use of time for other types of activities during travel, including working, reading, sleeping, entertainment, etc. Our study aims to provide empirical insights on future modal choice preferences for regular trips for Romanian citizens, using a sample of 309 respondents to a web survey on issues related to automated vehicles. Using multinomial logistic models (MNL), we analysed the relationship between three mode choices: regular car, private automated vehicle, and shared automated vehicle, along with the individual and household characteristics. In addition, we calculated the VoT for each mode choice based on the results of MNL analysis. Results showed that VoT is strongly influenced by travel cost and travel time, by socio-economic characteristics such as age, gender, and education, and has the lowest value for the shared AV compared with a regular car or a private AV. Future research may conduct comparable studies in European countries but also explore the opinions and perceptions of vulnerable road users on AVs and VoT.

Suggested Citation

  • Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10828-:d:902148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hazel Si Min Lim & Araz Taeihagh, 2018. "Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications," Energies, MDPI, vol. 11(5), pages 1-23, April.
    2. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2021. "When, What and How to Teach about Electric Mobility? An Innovative Teaching Concept for All Stages of Education: Lessons from Poland," Energies, MDPI, vol. 14(19), pages 1-16, October.
    3. Agnieszka Dudziak & Monika Stoma & Andrzej Kuranc & Jacek Caban, 2021. "Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland," Energies, MDPI, vol. 14(18), pages 1-16, September.
    4. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    5. Rashidi, Taha Hossein & Waller, Travis & Axhausen, Kay, 2020. "Reduced value of time for autonomous vehicle users: Myth or reality?," Transport Policy, Elsevier, vol. 95(C), pages 30-36.
    6. Jingya Gao & Andisheh Ranjbari & Don MacKenzie, 2019. "Would being driven by others affect the value of travel time? Ridehailing as an analogy for automated vehicles," Transportation, Springer, vol. 46(6), pages 2103-2116, December.
    7. Patrick A. Singleton, 2019. "Discussing the “positive utilities” of autonomous vehicles: will travellers really use their time productively?," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 50-65, January.
    8. Kröger, Lars & Kuhnimhof, Tobias & Trommer, Stefan, 2019. "Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 146-161.
    9. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    10. Christina Pakusch & Gunnar Stevens & Alexander Boden & Paul Bossauer, 2018. "Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    11. Miltos Kyriakidis & Jaka Sodnik & Kristina Stojmenova & Arnór B. Elvarsson & Cristina Pronello & Nikolas Thomopoulos, 2020. "The Role of Human Operators in Safety Perception of AV Deployment—Insights from a Large European Survey," Sustainability, MDPI, vol. 12(21), pages 1-24, November.
    12. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2020. "Modeling Americans’ autonomous vehicle preferences: A focus on dynamic ride-sharing, privacy & long-distance mode choices," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    13. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    14. Clewlow, Regina R., 2016. "Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area," Transport Policy, Elsevier, vol. 51(C), pages 158-164.
    15. Dimitris Milakis, 2019. "Long-term implications of automated vehicles: an introduction," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 1-8, January.
    16. González-González, Esther & Nogués, Soledad & Stead, Dominic, 2020. "Parking futures: Preparing European cities for the advent of automated vehicles," Land Use Policy, Elsevier, vol. 91(C).
    17. Liliana Andrei & Mihaela Hermina Negulescu & Oana Luca, 2022. "Premises for the Future Deployment of Automated and Connected Transport in Romania Considering Citizens’ Perceptions and Attitudes towards Automated Vehicles," Energies, MDPI, vol. 15(5), pages 1-23, February.
    18. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    19. Webb, Jeremy & Wilson, Clevo & Kularatne, Thamarasi, 2019. "Will people accept shared autonomous electric vehicles? A survey before and after receipt of the costs and benefits," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 118-135.
    20. Fábio Duarte & Carlo Ratti, 2018. "The Impact of Autonomous Vehicles on Cities: A Review," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(4), pages 3-18, October.
    21. Barbour, Natalia & Menon, Nikhil & Zhang, Yu & Mannering, Fred, 2019. "Shared automated vehicles: A statistical analysis of consumer use likelihoods and concerns," Transport Policy, Elsevier, vol. 80(C), pages 86-93.
    22. Madalina Balau, 2019. "Symbolic and Affective Motives, Constraints and Self-Effi cacy among Romanian Car Buyers," Journal of Marketing and Consumer Behaviour in Emerging Markets, University of Warsaw, Faculty of Management, vol. 1(9), pages 14-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oana Luca & Liliana Andrei & Cristina Iacoboaea & Florian Gaman, 2023. "Unveiling the Hidden Effects of Automated Vehicles on “Do No Significant Harm” Components," Sustainability, MDPI, vol. 15(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    2. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    3. Lee, Jaehyung & Lee, Euntak & Yun, Jaewoong & Chung, Jin-Hyuk & Kim, Jinhee, 2021. "Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Rashidi, Taha Hossein & Waller, Travis & Axhausen, Kay, 2020. "Reduced value of time for autonomous vehicle users: Myth or reality?," Transport Policy, Elsevier, vol. 95(C), pages 30-36.
    5. Dannemiller, Katherine A. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Chandra R., 2021. "Investigating autonomous vehicle impacts on individual activity-travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 402-422.
    6. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    7. Wang, Jinghui & Yang, Hao, 2023. "Low carbon future of vehicle sharing, automation, and electrification: A review of modeling mobility behavior and demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    8. Liliana Andrei & Mihaela Hermina Negulescu & Oana Luca, 2022. "Premises for the Future Deployment of Automated and Connected Transport in Romania Considering Citizens’ Perceptions and Attitudes towards Automated Vehicles," Energies, MDPI, vol. 15(5), pages 1-23, February.
    9. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    10. Lavoie, Brenden & Ong, Felita & Habib, Khandker Nurul, 2024. "Relax on the way to work or work on the way to relax? Influences of vehicle interior on travel time perceptions in autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    11. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    12. Ryosuke Abe & Yusuke Kita & Daisuke Fukuda, 2020. "An Experimental Approach to Understanding the Impacts of Monitoring Methods on Use Intentions for Autonomous Vehicle Services: Survey Evidence from Japan," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    13. Dimitrios Rizopoulos & Marina Laskari & Gerasimos Kouloumbis & Ioanna Fergadiotou & Patrick Durkin & Kati Kõrbe Kaare & Muhammad Mahtab Alam, 2022. "5G as an Enabler of Connected-and-Automated Mobility in European Cross-Border Corridors—A Market Assessment," Sustainability, MDPI, vol. 14(21), pages 1-30, November.
    14. Hirte, Georg & Laes, Renée & Gerike, Regine, 2023. "Working from self-driving cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    15. Wu, Min & Wang, Nanxi & Yuen, Kum Fai, 2023. "Can autonomy level and anthropomorphic characteristics affect public acceptance and trust towards shared autonomous vehicles?," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    16. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    17. Jara-Diaz, Sergio, 2024. "The value(s) of travel time savings considering in-vehicle activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    18. Laura Heubeck & Franziska Hartwich & Franziska Bocklisch, 2023. "To Share or Not to Share—Expected Transportation Mode Changes Given Different Types of Fully Automated Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    19. Jörg Sonnleitner & Markus Friedrich & Emely Richter, 2022. "Impacts of highly automated vehicles on travel demand: macroscopic modeling methods and some results," Transportation, Springer, vol. 49(3), pages 927-950, June.
    20. Ming Yan & Zijun Lin & Peng Lu & Mansu Wang & Lucia Rampino & Giandomenico Caruso, 2023. "Speculative Exploration on Future Sustainable Human-Machine Interface Design in Automated Shuttle Buses," Sustainability, MDPI, vol. 15(6), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10828-:d:902148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.