IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v161y2022ics1366554522000849.html
   My bibliography  Save this article

Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure

Author

Listed:
  • Hao, Wu
  • Martin, Layla

Abstract

Vehicle sharing services make travel more convenient, but increase traffic, pollute the environment, and negatively impact existing markets. To achieve a high societal welfare, public authorities regulate vehicle sharing. However, it remains unclear whether these regulations work efficiently without unexpected influences on seemingly unrelated aspects of the fleet and service structure. We study impact of regulations on decisions of vehicle sharing operators, and measure efficiency and effectiveness of these regulations. By investigating the influences of these interactions on societal welfare, we gain insights on how operators should adjust their decisions and regulators should adjust their regulations. Operators adapt fleet size, open stations, availability, and rebalancing operations to given regulations. We formalize the decision on the optimal fleet and service structure as a Mixed Integer Second-Order Cone Program. Using examples, we show that the inter-dependencies between different regulations and societal welfare indicators are non-trivial, possibly even counter-intuitive, suggesting a numerical approach to determine the direction and relevance of influencing factors. We, thus, conduct a large numerical study on artificial instances and a case study using data from New York City. Regulating the number of open stations, fleet size, or total distance reduces empty vehicle distance to a similar extent (by more than 30% of empty vehicles in the NYC case study), and more substantially than regulating the empty vehicle distance directly. Among all studied regulations, enforcing equal service availability results in the least profit loss (10% in the NYC case study). Unlike other regulations, imposing a tax predominantly affects the societal welfare indicators linearly, and can thus be enforced and controlled more easily.

Suggested Citation

  • Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:transe:v:161:y:2022:i:c:s1366554522000849
    DOI: 10.1016/j.tre.2022.102692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522000849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaspi, Mor & Raviv, Tal & Tzur, Michal & Galili, Hila, 2016. "Regulating vehicle sharing systems through parking reservation policies: Analysis and performance bounds," European Journal of Operational Research, Elsevier, vol. 251(3), pages 969-987.
    2. Ioannis Bellos & Mark Ferguson & L. Beril Toktay, 2017. "The Car Sharing Economy: Interaction of Business Model Choice and Product Line Design," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 185-201, May.
    3. Lin, Dung-Ying & Kuo, Jia-Kai, 2021. "The vehicle deployment and relocation problem for electric vehicle sharing systems considering demand and parking space stochasticity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    4. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    5. Xiaolei Wang & Hai Yang & Daoli Zhu, 2018. "Driver-Rider Cost-Sharing Strategies and Equilibria in a Ridesharing Program," Transportation Science, INFORMS, vol. 52(4), pages 868-881, August.
    6. Luo, Qi & Saigal, Romesh & Chen, Zhibin & Yin, Yafeng, 2019. "Accelerating the adoption of automated vehicles by subsidies: A dynamic games approach," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 226-243.
    7. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    8. Martin, Layla & Minner, Stefan, 2021. "Feature-based selection of carsharing relocation modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Hossein Abouee‐Mehrizi & Opher Baron & Oded Berman & David Chen, 2021. "Adoption of Electric Vehicles in Car Sharing Market," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 190-209, January.
    10. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    11. Ziru Li & Chen Liang & Yili Hong & Zhongju Zhang, 2022. "How Do On‐demand Ridesharing Services Affect Traffic Congestion? The Moderating Role of Urban Compactness," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 239-258, January.
    12. George, David K. & Xia, Cathy H., 2011. "Fleet-sizing and service availability for a vehicle rental system via closed queueing networks," European Journal of Operational Research, Elsevier, vol. 211(1), pages 198-207, May.
    13. Ashish Kabra & Elena Belavina & Karan Girotra, 2020. "Bike-Share Systems: Accessibility and Availability," Management Science, INFORMS, vol. 66(9), pages 3803-3824, September.
    14. Anton Braverman & J. G. Dai & Xin Liu & Lei Ying, 2019. "Empty-Car Routing in Ridesharing Systems," Operations Research, INFORMS, vol. 67(5), pages 1437-1452, September.
    15. Jiayi Joey Yu & Christopher S. Tang & Zuo-Jun Max Shen & Xiqun Michael Chen, 2020. "A Balancing Act of Regulating On-Demand Ride Services," Management Science, INFORMS, vol. 66(7), pages 2975-2992, July.
    16. Li, Shukai & Luo, Qi & Hampshire, Robert Cornelius, 2021. "Optimizing large on-demand transportation systems through stochastic conic programming," European Journal of Operational Research, Elsevier, vol. 295(2), pages 427-442.
    17. Li, Yanfeng & Liu, Yang, 2021. "The static bike rebalancing problem with optimal user incentives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    18. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    19. Jacob, Jagan & Roet-Green, Ricky, 2021. "Ride solo or pool: Designing price-service menus for a ride-sharing platform," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1008-1024.
    20. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    21. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    22. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    23. Alisoltani, Negin & Leclercq, Ludovic & Zargayouna, Mahdi, 2021. "Can dynamic ride-sharing reduce traffic congestion?," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 212-246.
    24. Joy Chang & Miao Yu & Siqian Shen & Ming Xu, 2017. "Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO 2 Emission Constraint," Service Science, INFORMS, vol. 9(3), pages 205-218, September.
    25. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    26. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    27. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    28. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rathore, Bhawana & Sengupta, Pooja & Biswas, Baidyanath & Kumar, Ajay, 2024. "Predicting the price of taxicabs using Artificial Intelligence: A hybrid approach based on clustering and ordinal regression models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengshi Lu & Zhihao Chen & Siqian Shen, 2018. "Optimizing the Profitability and Quality of Service in Carshare Systems Under Demand Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 162-180, May.
    2. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    4. Saif Benjaafar & Ming Hu, 2020. "Operations Management in the Age of the Sharing Economy: What Is Old and What Is New?," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 93-101, January.
    5. Saif Benjaafar & Shining Wu & Hanlin Liu & Einar Bjarki Gunnarsson, 2022. "Dimensioning On-Demand Vehicle Sharing Systems," Management Science, INFORMS, vol. 68(2), pages 1218-1232, February.
    6. Bansal, Vishal & Kumar, Deepak Prakash & Roy, Debjit & Subramanian, Shankar C., 2022. "Performance evaluation and optimization of design parameters for electric vehicle-sharing platforms by considering vehicle dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    7. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    8. Yining Liu & Yanfeng Ouyang, 2022. "Planning ride-pooling services with detour restrictions for spatially heterogeneous demand: A multi-zone queuing network approach," Papers 2208.02219, arXiv.org, revised Jun 2023.
    9. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    10. Cui, Shaohua & Ma, Xiaolei & Zhang, Mingheng & Yu, Bin & Yao, Baozhen, 2022. "The parallel mobile charging service for free-floating shared electric vehicle clusters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    11. Long He & Guangrui Ma & Wei Qi & Xin Wang, 2021. "Charging an Electric Vehicle-Sharing Fleet," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 471-487, March.
    12. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    13. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    14. Guo, Dongliang & Fan, Zhi-Ping & Sun, Minghe, 2022. "B2C car-sharing services: Sharing mode selection and value-added service investment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Kanatlı, Mehmet Ali & Karaer, Özgen, 2022. "Servitization as an alternative business model and its implications on product durability, profitability & environmental impact," European Journal of Operational Research, Elsevier, vol. 301(2), pages 546-560.
    16. Andres Fielbaum & Maximilian Kronmueller & Javier Alonso-Mora, 2022. "Anticipatory routing methods for an on-demand ridepooling mobility system," Transportation, Springer, vol. 49(6), pages 1921-1962, December.
    17. Liu, Yining & Ouyang, Yanfeng, 2023. "Planning ride-pooling services with detour restrictions for spatially heterogeneous demand: A multi-zone queuing network approach," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    18. Lin Tian & Baojun Jiang & Yifan Xu, 2021. "Manufacturer’s Entry in the Product-Sharing Market," Manufacturing & Service Operations Management, INFORMS, vol. 23(3), pages 553-568, May.
    19. Lan Lu & Zheng Zhu & Pengfei Guo & Qiao‐Chu He, 2022. "Service Operations for Mixed Autonomous Paradigm: Lane Design and Subsidy," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1595-1612, April.
    20. Keith, David R. & Naumov, Sergey & Rakoff, Hannah E. & Sanches, Lars Meyer & Singh, Anuraag, 2024. "The effect of increasing vehicle utilization on the automotive industry," European Journal of Operational Research, Elsevier, vol. 317(3), pages 776-792.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:161:y:2022:i:c:s1366554522000849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.