IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v16y2024i3d10.1007_s12561-023-09413-6.html
   My bibliography  Save this article

Marginal Structural Illness-Death Models for Semi-competing Risks Data

Author

Listed:
  • Yiran Zhang

    (School of Public Health and Human Longevity Science)

  • Andrew Ying

    (Google Inc.)

  • Steve Edland

    (School of Public Health and Human Longevity Science)

  • Lon White

    (Pacific Health Research and Education Institute)

  • Ronghui Xu

    (School of Public Health and Human Longevity Science
    University of California, San Diego)

Abstract

The three-state illness-death model has been established as a general approach for regression analysis of semi-competing risks data. For observational data the marginal structural models (MSM) are a useful tool, under the potential outcomes framework to define and estimate parameters with causal interpretations. In this paper we introduce a class of marginal structural illness-death models for the analysis of observational semi-competing risks data. We consider two specific such models, the Markov illness-death MSM and the frailty-based Markov illness-death MSM. For interpretation purposes, risk contrasts under the MSMs are defined. Inference under the illness-death MSM can be carried out using estimating equations with inverse probability weighting, while inference under the frailty-based illness-death MSM requires a weighted EM algorithm. We study the inference procedures under both MSMs using extensive simulations, and apply them to the analysis of mid-life alcohol exposure on late life cognitive impairment as well as mortality using the Honolulu-Asia Aging Study data set. The R codes developed in this work have been implemented in the R package semicmprskcoxmsm that is publicly available on CRAN.

Suggested Citation

  • Yiran Zhang & Andrew Ying & Steve Edland & Lon White & Ronghui Xu, 2024. "Marginal Structural Illness-Death Models for Semi-competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 668-692, December.
  • Handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-023-09413-6
    DOI: 10.1007/s12561-023-09413-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-023-09413-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-023-09413-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-023-09413-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.