IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v50y2021i4p1842-1862.html
   My bibliography  Save this article

Subjective Causality and Counterfactuals in the Social Sciences: Toward an Ethnographic Causality?

Author

Listed:
  • Peter Abell
  • Ofer Engel

Abstract

The article explores the role that subjective evidence of causality and associated counterfactuals and counterpotentials might play in the social sciences where comparative cases are scarce. This scarcity rules out statistical inference based upon frequencies and usually invites in-depth ethnographic studies. Thus, if causality is to be preserved in such situations, a conception of ethnographic causal inference is required. Ethnographic causality inverts the standard statistical concept of causal explanation in observational studies, whereby comparison and generalization, across a sample of cases, are both necessary prerequisites for any causal inference. Ethnographic causality allows, in contrast, for causal explanation prior to any subsequent comparison or generalization.

Suggested Citation

  • Peter Abell & Ofer Engel, 2021. "Subjective Causality and Counterfactuals in the Social Sciences: Toward an Ethnographic Causality?," Sociological Methods & Research, , vol. 50(4), pages 1842-1862, November.
  • Handle: RePEc:sae:somere:v:50:y:2021:i:4:p:1842-1862
    DOI: 10.1177/0049124119852373
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124119852373
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124119852373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Colin Elman & John Gerring & James Mahoney, 2016. "Case Study Research," Sociological Methods & Research, , vol. 45(3), pages 375-391, August.
    2. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Bimonte & Antonella D’Agostino, 2021. "Tourism development and residents’ well-being: Comparing two seaside destinations in Italy," Tourism Economics, , vol. 27(7), pages 1508-1525, November.
    2. Sahar Saeed & Erica E. M. Moodie & Erin C. Strumpf & Marina B. Klein, 2018. "Segmented generalized mixed effect models to evaluate health outcomes," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 547-551, May.
    3. Manuel S. González Canché, 2017. "Financial Benefits of Rapid Student Loan Repayment: An Analytic Framework Employing Two Decades of Data," The ANNALS of the American Academy of Political and Social Science, , vol. 671(1), pages 154-182, May.
    4. Almer, Christian & Winkler, Ralph, 2017. "Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 125-151.
    5. Sanford C. Gordon & Hannah K. Simpson, 2020. "Causes, theories, and the past in political science," Public Choice, Springer, vol. 185(3), pages 315-333, December.
    6. Angelov, Nikolay & Eliason, Marcus, 2014. "The effects of targeted labour market programs for job seekers with occupational disabilities," Working Paper Series 2014:27, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    7. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Slutskin, L., 2017. "Graphical Statistical Methods for Studying Causal Effects. Bayesian Networks," Journal of the New Economic Association, New Economic Association, vol. 36(4), pages 12-30.
    9. Stephanie Farmer & Chris D Poulos, 2019. "The financialising local growth machine in Chicago," Urban Studies, Urban Studies Journal Limited, vol. 56(7), pages 1404-1425, May.
    10. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    11. Nicholas Illenberger & Dylan S. Small & Pamela A. Shaw, 2019. "Regression to the Mean's Impact on the Synthetic Control Method: Bias and Sensitivity Analysis," Papers 1909.04706, arXiv.org.
    12. Tsourapas, Gerasimos, 2019. "The Syrian Refugee Crisis and Foreign Policy Decision-Making in Jordan, Lebanon, and Turkey," SocArXiv a6s58, Center for Open Science.
    13. Gary Henry & Roderick Rose & Doug Lauen, 2014. "Are value-added models good enough for teacher evaluations? Assessing commonly used models with simulated and actual data," Investigaciones de Economía de la Educación volume 9, in: Adela García Aracil & Isabel Neira Gómez (ed.), Investigaciones de Economía de la Educación 9, edition 1, volume 9, chapter 20, pages 383-405, Asociación de Economía de la Educación.
    14. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    15. Christian Almer & Ralph Winkler, 2012. "The Effect of Kyoto Emission Targets on Domestic CO2 Emissions: A Synthetic Control Approach," Diskussionsschriften dp1202, Universitaet Bern, Departement Volkswirtschaft.
    16. Horvath, Akos & Lang, Peter, 2021. "Do loan subsidies boost the real activity of small firms?," Journal of Banking & Finance, Elsevier, vol. 122(C).
    17. Emily S. Taylor Poppe, 2016. "Homeowner Representation in the Foreclosure Crisis," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(4), pages 809-836, December.
    18. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    19. Necati Ertekin & Jeffrey D. Shulman & Haipeng (Allan) Chen, 2019. "On the Profitability of Stacked Discounts: Identifying Revenue and Cost Effects of Discount Framing," Marketing Science, INFORMS, vol. 38(2), pages 317-342, March.
    20. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:50:y:2021:i:4:p:1842-1862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.