IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i1p136-149.html
   My bibliography  Save this article

Bayesian inference of causal effects from observational data in Gaussian graphical models

Author

Listed:
  • Federico Castelletti
  • Guido Consonni

Abstract

We assume that multivariate observational data are generated from a distribution whose conditional independencies are encoded in a Directed Acyclic Graph (DAG). For any given DAG, the causal effect of a variable onto another one can be evaluated through intervention calculus. A DAG is typically not identifiable from observational data alone. However, its Markov equivalence class (a collection of DAGs) can be estimated from the data. As a consequence, for the same intervention a set of causal effects, one for each DAG in the equivalence class, can be evaluated. In this paper, we propose a fully Bayesian methodology to make inference on the causal effects of any intervention in the system. Main features of our method are: (a) both uncertainty on the equivalence class and the causal effects are jointly modeled; (b) priors on the parameters of the modified Cholesky decomposition of the precision matrices across all DAG models are constructively assigned starting from a unique prior on the complete (unrestricted) DAG; (c) an efficient algorithm to sample from the posterior distribution on graph space is adopted; (d) an objective Bayes approach, requiring virtually no user specification, is used throughout. We demonstrate the merits of our methodology in simulation studies, wherein comparisons with current state‐of‐the‐art procedures turn out to be highly satisfactory. Finally we examine a real data set of gene expressions for Arabidopsis thaliana.

Suggested Citation

  • Federico Castelletti & Guido Consonni, 2021. "Bayesian inference of causal effects from observational data in Gaussian graphical models," Biometrics, The International Biometric Society, vol. 77(1), pages 136-149, March.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:136-149
    DOI: 10.1111/biom.13281
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13281
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alain Hauser & Peter Bühlmann, 2015. "Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 291-318, January.
    2. J. Peters & P. Bühlmann, 2014. "Identifiability of Gaussian structural equation models with equal error variances," Biometrika, Biometrika Trust, vol. 101(1), pages 219-228.
    3. Benjamin Frot & Preetam Nandy & Marloes H. Maathuis, 2019. "Robust causal structure learning with some hidden variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 459-487, July.
    4. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    5. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Rejoinder to the discussion of “Bayesian graphical models for modern biological applications”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 287-294, June.
    2. Federico Castelletti & Alessandro Mascaro, 2021. "Structural learning and estimation of joint causal effects among network-dependent variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1289-1314, December.
    3. Federico Castelletti & Guido Consonni & Luca Rocca, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 261-267, June.
    4. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castelletti, Federico & Peluso, Stefano, 2021. "Equivalence class selection of categorical graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    2. Federico Castelletti & Guido Consonni, 2020. "Discovering causal structures in Bayesian Gaussian directed acyclic graph models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1727-1745, October.
    3. Nikolaos Petrakis & Stefano Peluso & Dimitris Fouskakis & Guido Consonni, 2020. "Objective methods for graphical structural learning," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 420-438, August.
    4. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    5. Federico Castelletti, 2020. "Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures," International Statistical Review, International Statistical Institute, vol. 88(3), pages 752-775, December.
    6. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Wößmann, 2021. "Mentoring verbessert die Arbeitsmarktchancen von stark benachteiligten Jugendlichen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 74(02), pages 31-38, February.
    7. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    9. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    10. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    11. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    12. Bonesrønning, Hans & Finseraas, Henning & Hardoy, Ines & Iversen, Jon Marius Vaag & Nyhus, Ole Henning & Opheim, Vibeke & Salvanes, Kari Vea & Sandsør, Astrid Marie Jorde & Schøne, Pål, 2022. "Small-group instruction to improve student performance in mathematics in early grades: Results from a randomized field experiment," Journal of Public Economics, Elsevier, vol. 216(C).
    13. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    14. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    15. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    16. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    17. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    18. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    19. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    20. Suresh de Mel & David McKenzie & Christopher Woodruff, 2019. "Labor Drops: Experimental Evidence on the Return to Additional Labor in Microenterprises," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 202-235, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:136-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.