IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v25y2013i4p939-970.html
   My bibliography  Save this article

Testing equality of functions under monotonicity constraints

Author

Listed:
  • Cécile Durot
  • Piet Groeneboom
  • Hendrik P. Lopuhaä

Abstract

We consider the problem of testing equality of functions f j :[ a, b ]→ℝ for j =1, 2, ..., J on the basis of J independent samples from possibly different distributions under the assumption that the functions are monotone. We provide a uniform approach that covers testing equality of monotone regression curves, equality of monotone densities and equality of monotone hazards in the random censorship model. Two test statistics are proposed based on L 1 -distances. We show that both statistics are asymptotically normal and we provide bootstrap implementations, which are shown to have critical regions with asymptotic level α.

Suggested Citation

  • Cécile Durot & Piet Groeneboom & Hendrik P. Lopuhaä, 2013. "Testing equality of functions under monotonicity constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 939-970, December.
  • Handle: RePEc:taf:gnstxx:v:25:y:2013:i:4:p:939-970
    DOI: 10.1080/10485252.2013.826356
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.826356
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.826356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alicja Janic‐Wró & Teresa Ledwina, 2000. "Data Driven Rank Test for Two‐Sample Problem," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 281-297, June.
    2. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
    3. Marie Hušková & Simos Meintanis, 2008. "Tests for the multivariate -sample problem based on the empirical characteristic function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 263-277.
    4. Carroll, Raymond J. & Delaigle, Aurore & Hall, Peter, 2011. "Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 191-202.
    5. Delgado, Miguel A., 1993. "Testing the equality of nonparametric regression curves," Statistics & Probability Letters, Elsevier, vol. 17(3), pages 199-204, June.
    6. Piet Groeneboom, 2012. "Likelihood Ratio Type Two-Sample Tests for Current Status Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 645-662, December.
    7. King, Eileen & Hart, Jeffrey D. & Wehrly, Thomas E., 1991. "Testing the equality of two regression curves using linear smoothers," Statistics & Probability Letters, Elsevier, vol. 12(3), pages 239-247, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hendrik P. Lopuhaä & Eni Musta, 2017. "Smooth estimation of a monotone hazard and a monotone density under random censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 58-82, January.
    2. Holger Dette & Subhra Sankar Dhar & Weichi Wu, 2021. "Identifying shifts between two regression curves," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 855-889, October.
    3. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    4. Lopuhaä, Hendrik P. & Musta, Eni, 2018. "The distance between a naive cumulative estimator and its least concave majorant," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 119-128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Lavergne, Pascal, 2001. "An equality test across nonparametric regressions," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 307-344, July.
    4. Scheike, Thomas H., 2000. "Comparison of non-parametric regression functions through their cumulatives," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 21-32, January.
    5. Juan Carlos Pardo-Fernández & María Dolores Jiménez-Gamero & Anouar El Ghouch, 2015. "A Non-parametric ANOVA-type Test for Regression Curves Based on Characteristic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 197-213, March.
    6. Srihera, Ramidha & Stute, Winfried, 2010. "Nonparametric comparison of regression functions," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2039-2059, October.
    7. Dette, Holger & Neumeyer, Natalie, 2000. "Nonparametric analysis of covariance," Technical Reports 2000,42, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. repec:cte:werepe:we1138 is not listed on IDEAS
    9. Dette, Holger & Neumeyer, Natalie, 2000. "Nonparametric comparison of regression curves - an empirical process approach," Technical Reports 2000,62, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. M. D. Jiménez-Gamero & M. Cousido-Rocha & M. V. Alba-Fernández & F. Jiménez-Jiménez, 2022. "Testing the equality of a large number of populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-21, March.
    11. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    12. Gørgens, Tue, 2002. "Nonparametric comparison of regression curves by local linear fitting," Statistics & Probability Letters, Elsevier, vol. 60(1), pages 81-89, November.
    13. Yatchew, A., 1999. "An elementary nonparametric differencing test of equality of regression functions," Economics Letters, Elsevier, vol. 62(3), pages 271-278, March.
    14. Khismatullina, Marina & Vogt, Michael, 2023. "Nonparametric comparison of epidemic time trends: The case of COVID-19," Journal of Econometrics, Elsevier, vol. 232(1), pages 87-108.
    15. Viatcheslav Melas & Andrey Pepelyshev & Petr Shpilev & Luigi Salmaso & Livio Corain & Rosa Arboretti, 2015. "On the optimal choice of the number of empirical Fourier coefficients for comparison of regression curves," Statistical Papers, Springer, vol. 56(4), pages 981-997, November.
    16. Hira Koul & Fang Li, 2005. "Testing for Superiority among Two Time Series," Statistical Inference for Stochastic Processes, Springer, vol. 8(2), pages 109-135, September.
    17. Jean-David Fermanian & Dominique Guégan, 2021. "Fair learning with bagging," Documents de travail du Centre d'Economie de la Sorbonne 21034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Martin L. Hazelton & Tilman M. Davies, 2022. "Pointwise comparison of two multivariate density functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1791-1810, December.
    19. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    20. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    21. Hassan Doosti & Peter Hall, 2016. "Making a non-parametric density estimator more attractive, and more accurate, by data perturbation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 445-462, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:25:y:2013:i:4:p:939-970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.