Invariant Feature Learning Based on Causal Inference from Heterogeneous Environments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
- Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.
- Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
- Martin Ravallion, 2022. "On the Gains from Tradable Benefits‐in‐kind: Evidence for Workfare in India," Economica, London School of Economics and Political Science, vol. 89(355), pages 770-787, July.
- Peter Abell & Ofer Engel, 2021. "Subjective Causality and Counterfactuals in the Social Sciences: Toward an Ethnographic Causality?," Sociological Methods & Research, , vol. 50(4), pages 1842-1862, November.
- Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Salvatore Bimonte & Antonella D’Agostino, 2021. "Tourism development and residents’ well-being: Comparing two seaside destinations in Italy," Tourism Economics, , vol. 27(7), pages 1508-1525, November.
- Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
- Antonio R. Linero, 2022. "Simulation‐based estimators of analytically intractable causal effects," Biometrics, The International Biometric Society, vol. 78(3), pages 1001-1017, September.
- Berger, Marius & Hottenrott, Hanna, 2021.
"Start-up subsidies and the sources of venture capital,"
Journal of Business Venturing Insights, Elsevier, vol. 16(C).
- Hottenrott, Hanna & Berger, Marius, 2021. "Start-Up Subsidies and the Sources of Venture Capital," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242383, Verein für Socialpolitik / German Economic Association.
- Sahar Saeed & Erica E. M. Moodie & Erin C. Strumpf & Marina B. Klein, 2018. "Segmented generalized mixed effect models to evaluate health outcomes," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 547-551, May.
- Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
- Hodula, Martin & Melecký, Martin & Pfeifer, Lukáš & Szabo, Milan, 2023. "Cooling the mortgage loan market: The effect of borrower-based limits on new mortgage lending," Journal of International Money and Finance, Elsevier, vol. 132(C).
- Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.
- Manuel S. González Canché, 2017. "Financial Benefits of Rapid Student Loan Repayment: An Analytic Framework Employing Two Decades of Data," The ANNALS of the American Academy of Political and Social Science, , vol. 671(1), pages 154-182, May.
- Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023.
"Synthetic Difference In Differences Estimation,"
Papers
2301.11859, arXiv.org, revised Feb 2023.
- Clarke, Damian & Pailañir, Daniel & Athey, Susan & Imbens, Guido W., 2023. "Synthetic Difference-in-Differences Estimation," IZA Discussion Papers 15907, Institute of Labor Economics (IZA).
- Almer, Christian & Winkler, Ralph, 2017.
"Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol,"
Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 125-151.
- Christian Almer & Ralph Winkler, 2015. "Analysing the Effectiveness of International Environmental Policies: The Case of the Kyoto Protocol," Department of Economics Working Papers 39/15, University of Bath, Department of Economics.
- Sanford C. Gordon & Hannah K. Simpson, 2020. "Causes, theories, and the past in political science," Public Choice, Springer, vol. 185(3), pages 315-333, December.
- Lechner, Michael, 2008. "A note on endogenous control variables in causal studies," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 190-195, February.
- Angelov, Nikolay & Eliason, Marcus, 2014. "The effects of targeted labour market programs for job seekers with occupational disabilities," Working Paper Series 2014:27, IFAU - Institute for Evaluation of Labour Market and Education Policy.
More about this item
Keywords
invariant feature learning; causal representation learning; out-of-distribution generalization; causal inference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:696-:d:1347243. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.