IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i4p1064-1073.html
   My bibliography  Save this article

Bayesian Latent Factor Regression for Functional and Longitudinal Data

Author

Listed:
  • Silvia Montagna
  • Surya T. Tokdar
  • Brian Neelon
  • David B. Dunson

Abstract

No abstract is available for this item.

Suggested Citation

  • Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:4:p:1064-1073
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2012.01788.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bobby L. Jones & Daniel S. Nagin & Kathryn Roeder, 2001. "A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories," Sociological Methods & Research, , vol. 29(3), pages 374-393, February.
    2. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    3. David B. Dunson, 2009. "Nonparametric Bayes local partition models for random effects," Biometrika, Biometrika Trust, vol. 96(2), pages 249-262.
    4. Sam Behseta & Robert E. Kass & Garrick L. Wallstrom, 2005. "Hierarchical models for assessing variability among functions," Biometrika, Biometrika Trust, vol. 92(2), pages 419-434, June.
    5. Bigelow, Jamie L. & Dunson, David B., 2009. "Bayesian Semiparametric Joint Models for Functional Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 26-36.
    6. Rolando De la Cruz‐Mesía & Fernando A. Quintana & Peter Müller, 2007. "Semiparametric Bayesian classification with longitudinal markers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(2), pages 119-137, March.
    7. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    8. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
    9. Shubhankar Ray & Bani Mallick, 2006. "Functional clustering by Bayesian wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 305-332, April.
    10. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    11. Gerhard Arminger & Bengt Muthén, 1998. "A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 271-300, September.
    12. Abel Rodríguez & David B. Dunson & Alan E. Gelfand, 2009. "Bayesian nonparametric functional data analysis through density estimation," Biometrika, Biometrika Trust, vol. 96(1), pages 149-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    2. Jaeeun Yu & Jinsu Park & Taeryon Choi & Masahiro Hashizume & Yoonhee Kim & Yasushi Honda & Yeonseung Chung, 2021. "Nonparametric Bayesian Functional Meta-Regression: Applications in Environmental Epidemiology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 45-70, March.
    3. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    4. Brown, Sarah & Ghosh, Pulak & Su, Li & Taylor, Karl, 2015. "Modelling household finances: A Bayesian approach to a multivariate two-part model," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 190-207.
    5. Patric Dolmeta & Raffaele Argiento & Silvia Montagna, 2023. "Bayesian GARCH modeling of functional sports data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 401-423, June.
    6. Pantelis Samartsidis & Shaun R. Seaman & Silvia Montagna & André Charlett & Matthew Hickman & Daniela De Angelis, 2020. "A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1437-1459, October.
    7. Luca Aiello & Matteo Fontana & Alessandra Guglielmi, 2023. "Bayesian functional emulation of CO2 emissions on future climate change scenarios," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    8. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    9. Mark J. Meyer & Brent A. Coull & Francesco Versace & Paul Cinciripini & Jeffrey S. Morris, 2015. "Bayesian function‐on‐function regression for multilevel functional data," Biometrics, The International Biometric Society, vol. 71(3), pages 563-574, September.
    10. Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
    11. Silvia Montagna & Tor Wager & Lisa Feldman Barrett & Timothy D. Johnson & Thomas E. Nichols, 2018. "Spatial Bayesian latent factor regression modeling of coordinate†based meta†analysis data," Biometrics, The International Biometric Society, vol. 74(1), pages 342-353, March.
    12. L Schiavon & A Canale & D B Dunson, 2022. "Generalized infinite factorization models [A latent factor linear mixed model for high-dimensional longitudinal data analysis]," Biometrika, Biometrika Trust, vol. 109(3), pages 817-835.
    13. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    2. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    3. Liverani, Silvia & Hastie, David I. & Azizi, Lamiae & Papathomas, Michail & Richardson, Sylvia, 2015. "PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i07).
    4. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    5. Eric Coker & Robert Gunier & Asa Bradman & Kim Harley & Katherine Kogut & John Molitor & Brenda Eskenazi, 2017. "Association between Pesticide Profiles Used on Agricultural Fields near Maternal Residences during Pregnancy and IQ at Age 7 Years," IJERPH, MDPI, vol. 14(5), pages 1-20, May.
    6. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    7. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    8. Lian, Heng & Choi, Taeryon & Meng, Jie & Jo, Seongil, 2016. "Posterior convergence for Bayesian functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 27-41.
    9. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    10. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    11. Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
    12. Renat Sergazinov & Andrew Leroux & Erjia Cui & Ciprian Crainiceanu & R. Nisha Aurora & Naresh M. Punjabi & Irina Gaynanova, 2023. "A case study of glucose levels during sleep using multilevel fast function on scalar regression inference," Biometrics, The International Biometric Society, vol. 79(4), pages 3873-3882, December.
    13. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    14. Jaeeun Yu & Jinsu Park & Taeryon Choi & Masahiro Hashizume & Yoonhee Kim & Yasushi Honda & Yeonseung Chung, 2021. "Nonparametric Bayesian Functional Meta-Regression: Applications in Environmental Epidemiology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 45-70, March.
    15. Roy, Arkaprava & Ghosal, Subhashis, 2022. "Optimal Bayesian smoothing of functional observations over a large graph," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Rahul Ghosal & Arnab Maity, 2023. "Variable selection in nonlinear function‐on‐scalar regression," Biometrics, The International Biometric Society, vol. 79(1), pages 292-303, March.
    17. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    18. Navarrete, Carlos A. & Quintana, Fernando A., 2011. "Similarity analysis in Bayesian random partition models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 97-109, January.
    19. Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    20. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:4:p:1064-1073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.