IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v26y2021i1d10.1007_s13253-020-00409-z.html
   My bibliography  Save this article

Nonparametric Bayesian Functional Meta-Regression: Applications in Environmental Epidemiology

Author

Listed:
  • Jaeeun Yu

    (Korea Advanced Institute of Science and Technology)

  • Jinsu Park

    (Korea Advanced Institute of Science and Technology)

  • Taeryon Choi

    (Korea University)

  • Masahiro Hashizume

    (The University of Tokyo)

  • Yoonhee Kim

    (The University of Tokyo)

  • Yasushi Honda

    (University of Tsukuba)

  • Yeonseung Chung

    (Korea Advanced Institute of Science and Technology)

Abstract

Two-stage meta-analysis has been popularly used in epidemiological studies to investigate an association between environmental exposure and health response by analyzing time-series data collected from multiple locations. The first stage estimates the location-specific association, while the second stage pools the associations across locations. The second stage often incorporates location-specific predictors (i.e., meta-predictors) to explain the between-location heterogeneity and is called meta-regression. The existing second-stage meta-regression relies on parametric assumptions and does not accommodate functional meta-predictors and spatial dependency. Motivated by these limitations, our research proposes a nonparametric Bayesian meta-regression which relaxes parametric assumptions and incorporates functional meta-predictors and spatial dependency. The proposed meta-regression is formulated by jointly modeling the association parameters and the functional meta-predictors using Dirichlet process (DP) or local DP mixtures. In doing so, the functional meta-predictors are represented parsimoniously by the coefficients of the orthonormal basis. The proposed models were applied to (1) a temperature–mortality association study and (2) suicide seasonality study, and validated through a simulation study. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Jaeeun Yu & Jinsu Park & Taeryon Choi & Masahiro Hashizume & Yoonhee Kim & Yasushi Honda & Yeonseung Chung, 2021. "Nonparametric Bayesian Functional Meta-Regression: Applications in Environmental Epidemiology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 45-70, March.
  • Handle: RePEc:spr:jagbes:v:26:y:2021:i:1:d:10.1007_s13253-020-00409-z
    DOI: 10.1007/s13253-020-00409-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-020-00409-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-020-00409-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Staicu, Ana-Maria & Di, Chong-Zhi, 2009. "Generalized Multilevel Functional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1550-1561.
    2. Chung, Yeonseung & Dunson, David B., 2009. "Nonparametric Bayes Conditional Distribution Modeling With Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1646-1660.
    3. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
    4. Bigelow, Jamie L. & Dunson, David B., 2009. "Bayesian Semiparametric Joint Models for Functional Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 26-36.
    5. Dominici F. & Daniels M. & Zeger S. L. & Samet J. M., 2002. "Air Pollution and Mortality: Estimating Regional and National Dose-Response Relationships," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 100-111, March.
    6. Chew, Kenneth S. Y. & McCleary, Richard, 1995. "The spring peak in suicides: A cross-national analysis," Social Science & Medicine, Elsevier, vol. 40(2), pages 223-230, January.
    7. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    8. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    9. L. J. Welty & R. D. Peng & S. L. Zeger & F. Dominici, 2009. "Bayesian Distributed Lag Models: Estimating Effects of Particulate Matter Air Pollution on Daily Mortality," Biometrics, The International Biometric Society, vol. 65(1), pages 282-291, March.
    10. Abel Rodríguez & David B. Dunson & Alan E. Gelfand, 2009. "Bayesian nonparametric functional data analysis through density estimation," Biometrika, Biometrika Trust, vol. 96(1), pages 149-162.
    11. Gyuseok Sim & Ho Kim & Antonella Zanobetti & Joel Schwartz & Yeonseung Chung, 2018. "Non‐parametric Bayesian multivariate metaregression: an application in environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 881-896, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    2. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    3. Liverani, Silvia & Hastie, David I. & Azizi, Lamiae & Papathomas, Michail & Richardson, Sylvia, 2015. "PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i07).
    4. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    5. Eric Coker & Robert Gunier & Asa Bradman & Kim Harley & Katherine Kogut & John Molitor & Brenda Eskenazi, 2017. "Association between Pesticide Profiles Used on Agricultural Fields near Maternal Residences during Pregnancy and IQ at Age 7 Years," IJERPH, MDPI, vol. 14(5), pages 1-20, May.
    6. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
    7. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    8. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Multiple Imputation for Regression Models with Missing Mixed Continuous-Discrete Covariates," Discussion Paper Series DP2018-15, Research Institute for Economics & Business Administration, Kobe University.
    9. Silvia Liverani & Lucy Leigh & Irene L. Hudson & Julie E. Byles, 2021. "Clustering method for censored and collinear survival data," Computational Statistics, Springer, vol. 36(1), pages 35-60, March.
    10. Lian, Heng & Choi, Taeryon & Meng, Jie & Jo, Seongil, 2016. "Posterior convergence for Bayesian functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 27-41.
    11. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    12. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    13. Tsutomu Nishimura & I-Ju Tsai & Hiroyuki Yamauchi & Eiji Nakatani & Masanori Fukushima & Chung Y. Hsu, 2020. "Association of Geomagnetic Disturbances and Suicide Attempts in Taiwan, 1997–2013: A Cross-Sectional Study," IJERPH, MDPI, vol. 17(4), pages 1-9, February.
    14. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    15. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    16. Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
    17. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    18. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    19. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    20. Svajone Bekesiene & Ieva Meidute-Kavaliauskiene, 2022. "Artificial Neural Networks for Modelling and Predicting Urban Air Pollutants: Case of Lithuania," Sustainability, MDPI, vol. 14(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:26:y:2021:i:1:d:10.1007_s13253-020-00409-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.