IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i2d10.1007_s10260-022-00656-z.html
   My bibliography  Save this article

Bayesian GARCH modeling of functional sports data

Author

Listed:
  • Patric Dolmeta

    (Università commerciale Luigi Bocconi)

  • Raffaele Argiento

    (Università degli Studi di Bergamo
    Collegio Carlo Alberto)

  • Silvia Montagna

    (Collegio Carlo Alberto
    Università degli Studi di Torino)

Abstract

The use of statistical methods in sport analytics has gained a rapidly growing interest over the last decade, and nowadays is common practice. In particular, the interest in understanding and predicting an athlete’s performance throughout his/her career is motivated by the need to evaluate the efficacy of training programs, anticipate fatigue to prevent injuries and detect unexpected of disproportionate increases in performance that might be indicative of doping. Moreover, fast evolving data gathering technologies require up to date modelling techniques that adapt to the distinctive features of sports data. In this work, we propose a hierarchical Bayesian model for describing and predicting the evolution of performance over time for shot put athletes. We rely both on a smooth functional contribution and on a linear mixed effect model with heteroskedastic errors to represent the athlete-specific trajectories. The resulting model provides an accurate description of the performance trajectories and helps specifying both the intra- and inter-seasonal variability of measurements. Further, the model allows for the prediction of athletes’ performance in future sport seasons. We apply our model to an extensive real world data set on performance data of professional shot put athletes recorded at elite competitions.

Suggested Citation

  • Patric Dolmeta & Raffaele Argiento & Silvia Montagna, 2023. "Bayesian GARCH modeling of functional sports data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 401-423, June.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:2:d:10.1007_s10260-022-00656-z
    DOI: 10.1007/s10260-022-00656-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-022-00656-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-022-00656-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martí Casals & A. Jose Martinez, 2013. "Modelling player performance in basketball through mixed models," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 13(1), pages 64-82, April.
    2. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
    3. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Wimmer Valentin & Fenske Nora & Pyrka Patricia & Fahrmeir Ludwig, 2011. "Exploring Competition Performance in Decathlon Using Semi-Parametric Latent Variable Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    2. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    3. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    4. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    5. Pantelis Samartsidis & Shaun R. Seaman & Silvia Montagna & André Charlett & Matthew Hickman & Daniela De Angelis, 2020. "A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1437-1459, October.
    6. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    7. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    8. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    9. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    11. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
    12. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    13. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    14. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    15. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    16. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    17. Jumah, Adusei & Kunst, Robert M., 2001. "The Effects of Exchange-Rate Exposures on Equity Asset Markets," Economics Series 94, Institute for Advanced Studies.
    18. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    19. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    20. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:2:d:10.1007_s10260-022-00656-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.