IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v064i07.html
   My bibliography  Save this article

PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes

Author

Listed:
  • Liverani, Silvia
  • Hastie, David I.
  • Azizi, Lamiae
  • Papathomas, Michail
  • Richardson, Sylvia

Abstract

PReMiuM is a recently developed R package for Bayesian clustering using a Dirichlet process mixture model. This model is an alternative to regression models, non- parametrically linking a response vector to covariate data through cluster membership (Molitor, Papathomas, Jerrett, and Richardson 2010). The package allows binary, categorical, count and continuous response, as well as continuous and discrete covariates. Additionally, predictions may be made for the response, and missing values for the covariates are handled. Several samplers and label switching moves are implemented along with diagnostic tools to assess convergence. A number of R functions for post-processing of the output are also provided. In addition to fitting mixtures, it may additionally be of interest to determine which covariates actively drive the mixture components. This is implemented in the package as variable selection.

Suggested Citation

  • Liverani, Silvia & Hastie, David I. & Azizi, Lamiae & Papathomas, Michail & Richardson, Sylvia, 2015. "PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i07).
  • Handle: RePEc:jss:jstsof:v:064:i07
    DOI: http://hdl.handle.net/10.18637/jss.v064.i07
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v064i07/v64i07.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v064i07/PReMiuM_3.1.0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v064i07/v64i07.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v064.i07?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
    2. Bigelow, Jamie L. & Dunson, David B., 2009. "Bayesian Semiparametric Joint Models for Functional Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 26-36.
    3. C. Yau & O. Papaspiliopoulos & G. O. Roberts & C. Holmes, 2011. "Bayesian non‐parametric hidden Markov models with applications in genomics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 37-57, January.
    4. Chung, Yeonseung & Dunson, David B., 2009. "Nonparametric Bayes Conditional Distribution Modeling With Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1646-1660.
    5. David B. Dunson, 2009. "Nonparametric Bayes local partition models for random effects," Biometrika, Biometrika Trust, vol. 96(2), pages 249-262.
    6. Dunson, David B. & Herring, Amy H. & Siega-Riz, Anna Maria, 2008. "Bayesian Inference on Changes in Response Densities Over Predictor Clusters," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1508-1517.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
    2. Annalina Sarra & Lara Fontanella & Simone Zio, 2019. "Identifying Students at Risk of Academic Failure Within the Educational Data Mining Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 41-60, November.
    3. Sarrias, Mauricio, 2016. "Discrete Choice Models with Random Parameters in R: The Rchoice Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i10).
    4. Kane, Natalie, 2022. "Revealing the racial and spatial disparity in pediatric asthma: A Kansas City case study," Social Science & Medicine, Elsevier, vol. 292(C).
    5. Matthew Heiner & Matthew J. Heaton & Benjamin Abbott & Philip White & Camille Minaudo & Rémi Dupas, 2023. "Model-Based Clustering of Trends and Cycles of Nitrate Concentrations in Rivers Across France," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 74-98, March.
    6. Lauren Hoskovec & Wande Benka-Coker & Rachel Severson & Sheryl Magzamen & Ander Wilson, 2021. "Model choice for estimating the association between exposure to chemical mixtures and health outcomes: A simulation study," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-21, March.
    7. Lim, Hyunwoo & Yoo, Eun-Hye & Park, Minyoung, 2018. "Warehouse rental market segmentation using spatial profile regression," Journal of Transport Geography, Elsevier, vol. 73(C), pages 64-74.
    8. Lavigne, Aurore & Liverani, Silvia, 2024. "Quantifying the uncertainty of partitions for infinite mixture models," Statistics & Probability Letters, Elsevier, vol. 204(C).
    9. Bettina Grün & Paul Hofmarcher, 2021. "Identifying groups of determinants in Bayesian model averaging using Dirichlet process clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1018-1045, September.
    10. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    11. David Dege & Philipp Brüggemann, 2024. "Marketing analytics with RStudio: a software review," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 465-470, June.
    12. Daniel W Kennedy & Jessica Cameron & Paul P -Y Wu & Kerrie Mengersen, 2021. "Peer groups for organisational learning: Clustering with practical constraints," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    13. Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
    14. Boyuan Zhang, 2020. "Forecasting with Bayesian Grouped Random Effects in Panel Data," Papers 2007.02435, arXiv.org, revised Oct 2020.
    15. Eric Coker & Robert Gunier & Asa Bradman & Kim Harley & Katherine Kogut & John Molitor & Brenda Eskenazi, 2017. "Association between Pesticide Profiles Used on Agricultural Fields near Maternal Residences during Pregnancy and IQ at Age 7 Years," IJERPH, MDPI, vol. 14(5), pages 1-20, May.
    16. Silvia Liverani & Lucy Leigh & Irene L. Hudson & Julie E. Byles, 2021. "Clustering method for censored and collinear survival data," Computational Statistics, Springer, vol. 36(1), pages 35-60, March.
    17. Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Coker & Robert Gunier & Asa Bradman & Kim Harley & Katherine Kogut & John Molitor & Brenda Eskenazi, 2017. "Association between Pesticide Profiles Used on Agricultural Fields near Maternal Residences during Pregnancy and IQ at Age 7 Years," IJERPH, MDPI, vol. 14(5), pages 1-20, May.
    2. Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
    3. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
    4. Silvia Liverani & Lucy Leigh & Irene L. Hudson & Julie E. Byles, 2021. "Clustering method for censored and collinear survival data," Computational Statistics, Springer, vol. 36(1), pages 35-60, March.
    5. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    6. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    7. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    8. Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
    9. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    10. Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.
    11. Jaeeun Yu & Jinsu Park & Taeryon Choi & Masahiro Hashizume & Yoonhee Kim & Yasushi Honda & Yeonseung Chung, 2021. "Nonparametric Bayesian Functional Meta-Regression: Applications in Environmental Epidemiology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 45-70, March.
    12. Miller, Jeffrey W., 2019. "An elementary derivation of the Chinese restaurant process from Sethuraman’s stick-breaking process," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 112-117.
    13. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    14. Pelenis, Justinas, 2014. "Bayesian regression with heteroscedastic error density and parametric mean function," Journal of Econometrics, Elsevier, vol. 178(P3), pages 624-638.
    15. Boyuan Zhang, 2020. "Forecasting with Bayesian Grouped Random Effects in Panel Data," Papers 2007.02435, arXiv.org, revised Oct 2020.
    16. Daniele Durante & Sally Paganin & Bruno Scarpa & David B. Dunson, 2017. "Bayesian modelling of networks in complex business intelligence problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 555-580, April.
    17. Pelenis, Justinas, 2012. "Bayesian Semiparametric Regression," Economics Series 285, Institute for Advanced Studies.
    18. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    19. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    20. repec:cte:wsrepe:ws131211 is not listed on IDEAS
    21. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:064:i07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.