IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v122y2017icp198-204.html
   My bibliography  Save this article

A note on the multiplicative gamma process

Author

Listed:
  • Durante, Daniele

Abstract

Adaptive dimensionality reduction in high-dimensional problems is a key topic in statistics. The multiplicative gamma process takes a relevant step in this direction, but improved studies on its properties are required to ease implementation. This note addresses such aim.

Suggested Citation

  • Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
  • Handle: RePEc:eee:stapro:v:122:y:2017:i:c:p:198-204
    DOI: 10.1016/j.spl.2016.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521630253X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Withers & Saralees Nadarajah, 2013. "On the product of gamma random variables," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(1), pages 545-552, January.
    2. Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
    3. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
    4. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    5. Hongtu Zhu & Zakaria Khondker & Zhaohua Lu & Joseph G. Ibrahim, 2014. "Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 977-990, September.
    6. repec:dau:papers:123456789/4648 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.
    2. Jaejoon Lee & Seongil Jo & Jaeyong Lee, 2022. "Robust sparse Bayesian infinite factor models," Computational Statistics, Springer, vol. 37(5), pages 2693-2715, November.
    3. Kelly R. Moran & Elizabeth L. Turner & David Dunson & Amy H. Herring, 2021. "Bayesian hierarchical factor regression models to infer cause of death from verbal autopsy data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 532-557, June.
    4. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    5. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    6. L Schiavon & A Canale & D B Dunson, 2022. "Generalized infinite factorization models [A latent factor linear mixed model for high-dimensional longitudinal data analysis]," Biometrika, Biometrika Trust, vol. 109(3), pages 817-835.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    2. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    3. Jing Zhou & Anirban Bhattacharya & Amy H. Herring & David B. Dunson, 2015. "Bayesian Factorizations of Big Sparse Tensors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1562-1576, December.
    4. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    5. Pantelis Samartsidis & Shaun R. Seaman & Silvia Montagna & André Charlett & Matthew Hickman & Daniela De Angelis, 2020. "A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1437-1459, October.
    6. Daniele Durante & David B. Dunson & Joshua T. Vogelstein, 2017. "Nonparametric Bayes Modeling of Populations of Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1516-1530, October.
    7. Patric Dolmeta & Raffaele Argiento & Silvia Montagna, 2023. "Bayesian GARCH modeling of functional sports data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 401-423, June.
    8. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    9. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    10. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    11. Niko Hauzenberger & Maximilian Bock & Michael Pfarrhofer & Anna Stelzer & Gregor Zens, 2018. "Implications of macroeconomic volatility in the Euro area," Papers 1801.02925, arXiv.org, revised Jun 2018.
    12. Guanhua Fang & Jingchen Liu & Zhiliang Ying, 2019. "On the Identifiability of Diagnostic Classification Models," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 19-40, March.
    13. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    14. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
    15. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    16. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    17. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    18. Hiroyuki Kasahara & Katsumi Shimotsu, 2014. "Non-parametric identification and estimation of the number of components in multivariate mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 97-111, January.
    19. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    20. Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:122:y:2017:i:c:p:198-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.