IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v68y2006i2p305-332.html
   My bibliography  Save this article

Functional clustering by Bayesian wavelet methods

Author

Listed:
  • Shubhankar Ray
  • Bani Mallick

Abstract

Summary. We propose a nonparametric Bayes wavelet model for clustering of functional data. The wavelet‐based methodology is aimed at the resolution of generic global and local features during clustering and is suitable for clustering high dimensional data. Based on the Dirichlet process, the nonparametric Bayes model extends the scope of traditional Bayes wavelet methods to functional clustering and allows the elicitation of prior belief about the regularity of the functions and the number of clusters by suitably mixing the Dirichlet processes. Posterior inference is carried out by Gibbs sampling with conjugate priors, which makes the computation straightforward. We use simulated as well as real data sets to illustrate the suitability of the approach over other alternatives.

Suggested Citation

  • Shubhankar Ray & Bani Mallick, 2006. "Functional clustering by Bayesian wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 305-332, April.
  • Handle: RePEc:bla:jorssb:v:68:y:2006:i:2:p:305-332
    DOI: 10.1111/j.1467-9868.2006.00545.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2006.00545.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2006.00545.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    2. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    3. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers 06/15, Institute for Fiscal Studies.
    4. Alessandra Guglielmi & Francesca Ieva & Anna M. Paganoni & Fabrizio Ruggeri & Jacopo Soriano, 2014. "Semiparametric Bayesian models for clustering and classification in the presence of unbalanced in-hospital survival," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 25-46, January.
    5. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    6. Dongik Jang & Hee-Seok Oh & Philippe Naveau, 2017. "Identifying local smoothness for spatially inhomogeneous functions," Computational Statistics, Springer, vol. 32(3), pages 1115-1138, September.
    7. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    8. Claudia Angelini & Daniela De Canditiis & Marianna Pensky, 2012. "Clustering time-course microarray data using functional Bayesian infinite mixture model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 129-149, March.
    9. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    10. Ana Justel & Marcela Svarc, 2018. "A divisive clustering method for functional data with special consideration of outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 637-656, September.
    11. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    12. Stacia M. DeSantis & E. Andrés Houseman & Brent A. Coull & David N. Louis & Gayatry Mohapatra & Rebecca A. Betensky, 2009. "A Latent Class Model with Hidden Markov Dependence for Array CGH Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1296-1305, December.
    13. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    14. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers CWP06/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    16. M. Giacofci & S. Lambert-Lacroix & G. Marot & F. Picard, 2013. "Wavelet-Based Clustering for Mixed-Effects Functional Models in High Dimension," Biometrics, The International Biometric Society, vol. 69(1), pages 31-40, March.
    17. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    18. Jeffrey S. Morris, 2009. "Wavelet Methods in Statistics with R by NASON, G. P," Biometrics, The International Biometric Society, vol. 65(2), pages 667-668, June.
    19. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    20. Jim Q. Smith & Paul E. Anderson & Silvia Liverani, 2008. "Separation measures and the geometry of Bayes factor selection for classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 957-980, November.
    21. Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
    22. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    23. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:2:p:305-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.