IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v63y1998i3p271-300.html
   My bibliography  Save this article

A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm

Author

Listed:
  • Gerhard Arminger
  • Bengt Muthén

Abstract

No abstract is available for this item.

Suggested Citation

  • Gerhard Arminger & Bengt Muthén, 1998. "A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 271-300, September.
  • Handle: RePEc:spr:psycho:v:63:y:1998:i:3:p:271-300
    DOI: 10.1007/BF02294856
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294856
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    2. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    2. Asim Ansari & Kamel Jedidi & Sharan Jagpal, 2000. "A Hierarchical Bayesian Methodology for Treating Heterogeneity in Structural Equation Models," Marketing Science, INFORMS, vol. 19(4), pages 328-347, August.
    3. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    4. Asim Ansari & Kamel Jedidi, 2000. "Bayesian factor analysis for multilevel binary observations," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 475-496, December.
    5. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    6. Lee, Sik-Yum & Song, Xin-Yuan, 2003. "Maximum likelihood estimation and model comparison of nonlinear structural equation models with continuous and polytomous variables," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 125-142, October.
    7. Ralf van der Lans & Bram Van den Bergh & Evelien Dieleman, 2014. "Partner Selection in Brand Alliances: An Empirical Investigation of the Drivers of Brand Fit," Marketing Science, INFORMS, vol. 33(4), pages 551-566, July.
    8. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
    9. Silvia Montagna & Tor Wager & Lisa Feldman Barrett & Timothy D. Johnson & Thomas E. Nichols, 2018. "Spatial Bayesian latent factor regression modeling of coordinate†based meta†analysis data," Biometrics, The International Biometric Society, vol. 74(1), pages 342-353, March.
    10. Ludwig Fahrmeir & Alexander Raach, 2007. "A Bayesian Semiparametric Latent Variable Model for Mixed Responses," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 327-346, September.
    11. Jiang, Xiaomo & Mahadevan, Sankaran, 2009. "Bayesian structural equation modeling method for hierarchical model validation," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 796-809.
    12. Engel, Christoph & Kirchkamp, Oliver, 2019. "How to deal with inconsistent choices on multiple price lists," Journal of Economic Behavior & Organization, Elsevier, vol. 160(C), pages 138-157.
    13. Herbert Kin Shing Leung, 2020. "Unravelling Paradoxical Effects of Leader-Rated Performance on Follower Turnover Intention: A Regulatory Focus Perspective," International Journal of Business and Administrative Studies, Professor Dr. Bahaudin G. Mujtaba, vol. 6(1), pages 51-64.
    14. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    15. Hong-Tu Zhu & Sik-Yum Lee, 2001. "A Bayesian analysis of finite mixtures in the LISREL model," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 133-152, March.
    16. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    17. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    18. Cheah, Jun-Hwa & Memon, Mumtaz Ali & Richard, James E & Ting, Hiram & Cham, Tat-Huei, 2020. "CB-SEM latent interaction: Unconstrained and orthogonalized approaches," Australasian marketing journal, Elsevier, vol. 28(4), pages 218-234.
    19. Jeffrey R. Harring, 2009. "A Nonlinear Mixed Effects Model for Latent Variables," Journal of Educational and Behavioral Statistics, , vol. 34(3), pages 293-318, September.
    20. Cécile Proust & Hélène Jacqmin-Gadda & Jeremy M. G. Taylor & Julien Ganiayre & Daniel Commenges, 2006. "A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1014-1024, December.
    21. Congdon, Peter, 2009. "Modelling the impact of socioeconomic structure on spatial health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3047-3056, June.
    22. Walter Krämer, 2022. "Interview mit Gerhard Arminger," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(3), pages 287-294, December.
    23. Germà Coenders & Joan Batista-Foguet & Willem Saris, 2008. "Simple, Efficient and Distribution-free Approach to Interaction Effects in Complex Structural Equation Models," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(3), pages 369-396, June.
    24. Kirchkamp, Oliver & Oechssler, Joerg & Sofianos, Andis, 2021. "The Binary Lottery Procedure does not induce risk neutrality in the Holt & Laury and Eckel & Grossman tasks," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 348-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    2. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    3. Ana Beatriz Galvão & Michael T. Owyang, 2018. "Financial Stress Regimes and the Macroeconomy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1479-1505, October.
    4. Will Davis & Alexander Gordan & Rusty Tchernis, 2021. "Measuring the spatial distribution of health rankings in the United States," Health Economics, John Wiley & Sons, Ltd., vol. 30(11), pages 2921-2936, November.
    5. Francisco Peñaranda, 2004. "Are Vector Autoregressions an Accurate Model for Dynamic Asset Allocation?," Working Papers wp2004_0419, CEMFI.
    6. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    7. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    8. Dueker, Michael, 2006. "Kalman filtering with truncated normal state variables for Bayesian estimation of macroeconomic models," Economics Letters, Elsevier, vol. 93(1), pages 58-62, October.
    9. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    10. KIM, Jae-Young & PARK, Woong Yong, 2018. "Some Empirical Evidence on Models of the Fisher Relation: Post-Data Comparison," Discussion paper series HIAS-E-68, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    11. Siddhartha Chib & Edward Greenberg & Yuxin Chen, 1998. "MCMC Methods for Fitting and Comparing Multinomial Response Models," Econometrics 9802001, University Library of Munich, Germany, revised 06 May 1998.
    12. Uchiyama, Hirokuni, 2006. "The index of agency cost and the financial accelerator: the case of Japan," Japan and the World Economy, Elsevier, vol. 18(1), pages 22-48, January.
    13. Yun, Myeong-Su, 1999. "Generalized Selection Bias and The Decomposition of Wage Differentials," IZA Discussion Papers 69, Institute of Labor Economics (IZA).
    14. A. Onofri & L. Fulginiti, 2008. "Rejoinder," Journal of Productivity Analysis, Springer, vol. 30(1), pages 81-85, August.
    15. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.
    16. Chiang, Jeongwen & Chib, Siddhartha & Narasimhan, Chakravarthi, 1998. "Markov chain Monte Carlo and models of consideration set and parameter heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 223-248, November.
    17. Creel, Jérôme & Hubert, Paul, 2015. "Has Inflation Targeting Changed The Conduct Of Monetary Policy?," Macroeconomic Dynamics, Cambridge University Press, vol. 19(1), pages 1-21, January.
    18. Lahiri, Kajal & Gao, Jian, 2002. "Bayesian analysis of nested logit model by Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 111(1), pages 103-133, November.
    19. Eleonora Patacchini & Edoardo Rainone, 2017. "Social Ties and the Demand for Financial Services," Journal of Financial Services Research, Springer;Western Finance Association, vol. 52(1), pages 35-88, October.
    20. Hanrahan, Kevin F. & Westhoff, Patrick C. & Young, Robert E., II, 2001. "Trade Allocation Modeling: Comparing The Results From Armington And Locally Regular Ai Demand System Specifications Of A Uk Beef Import Demand Allocation Model," 2001 Annual meeting, August 5-8, Chicago, IL 20510, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:63:y:1998:i:3:p:271-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.