IDEAS home Printed from https://ideas.repec.org/r/wop/eacaec/9618.html
   My bibliography  Save this item

Forecasting Asymmetric Unemployment Rates

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2015. "Was the recent downturn in US real GDP predictable?," Applied Economics, Taylor & Francis Journals, vol. 47(28), pages 2985-3007, June.
  2. Philippe J. Deschamps, 2008. "Comparing smooth transition and Markov switching autoregressive models of US unemployment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
  3. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
  4. Bårdsen Gunnar & Hurn Stanley & McHugh Zöe, 2012. "Asymmetric Unemployment Rate Dynamics in Australia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-22, January.
  5. Philip Rothman, "undated". "Higher-Order Residual Analysis for Simple Bilinear and Threshold Autoregressive Models with the TR Test," Working Papers 9813, East Carolina University, Department of Economics.
  6. Juan Jiménez-Martin & M. Robles-Fernandez, 2010. "PPP: Delusion or Reality? Evidence from a Nonlinear Analysis," Open Economies Review, Springer, vol. 21(5), pages 679-704, November.
  7. Saafi Sami & Farhat Abdeljelil & Haj Mohamed Meriem Bel, 2015. "Testing the relationships between shadow economy and unemployment: empirical evidence from linear and nonlinear tests," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 585-608, December.
  8. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
  9. Crespo-Cuaresma, Jesus, 2000. "Forecasting European GDP Using Self-Exciting Threshold Autoregressive Models. A Warning," Economics Series 79, Institute for Advanced Studies.
  10. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
  11. Daniel M. Chin & John Geweke & Preston J. Miller, 2000. "Predicting turning points," Staff Report 267, Federal Reserve Bank of Minneapolis.
  12. Q.Farooq Akram & Øyvind Eitrheim & Lucio Sarno, 2006. "Non-linear Dynamics in Output, Real Exchange Rates and Real Money Balances: Norway, 1830-2003," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 333-377, Emerald Group Publishing Limited.
  13. Dan Chin & John Geweke & Preston Miller, 2000. "Predicting Turning Points: Technical Paper 2000-3," Working Papers 13337, Congressional Budget Office.
  14. James D. Hamilton, 2005. "What's real about the business cycle?," Review, Federal Reserve Bank of St. Louis, vol. 87(Jul), pages 435-452.
  15. Maurice Peat & Max Stevenson, 1995. "Testing for Nonlinearities in Economic and Financial Time Series," Working Paper Series 48, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  16. Burcu Gurcihan Yunculer & Gonul Sengul & Arzu Yavuz, 2014. "A Quest for Leading Indicators of the Turkish Unemployment Rate," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 14(1), pages 23-45.
  17. Yamei Liu & Walter Enders, 2003. "Out‐of‐Sample Forecasts and Nonlinear Model Selection with an Example of the Term Structure of Interest Rates," Southern Economic Journal, John Wiley & Sons, vol. 69(3), pages 520-540, January.
  18. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
  19. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
  20. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
  21. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  22. Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
  23. Parker Randall E. & Rothman Philip, 1998. "The Current Depth-of-Recession and Unemployment-Rate Forecasts," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-10, January.
  24. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2013. "Forecasting Nevada gross gaming revenue and taxable sales using coincident and leading employment indexes," Empirical Economics, Springer, vol. 44(2), pages 387-417, April.
  25. Mihai Mutascu & Scott W. Hegerty, 2023. "Predicting the contribution of artificial intelligence to unemployment rates: an artificial neural network approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(2), pages 400-416, June.
  26. Guglielmo Maria Caporale & Luis A. Gil‐Alana, 2007. "Nonlinearities and Fractional Integration in the US Unemployment Rate," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(4), pages 521-544, August.
  27. Andreas Karatahansopoulos & Georgios Sermpinis & Jason Laws & Christian Dunis, 2014. "Modelling and Trading the Greek Stock Market with Gene Expression and Genetic Programing Algorithms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 596-610, December.
  28. Philippe J. Deschamps, 2008. "Comparing smooth transition and Markov switching autoregressive models of US unemployment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
  29. Matthews, Kent & Minford, Patrick & Naraidoo, Ruthira, 2008. "Vicious and virtuous circles -- The political economy of unemployment in interwar UK and USA," European Journal of Political Economy, Elsevier, vol. 24(3), pages 605-614, September.
  30. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
  31. Pär Österholm, 2010. "Improving Unemployment Rate Forecasts Using Survey Data," Finnish Economic Papers, Finnish Economic Association, vol. 23(1), pages 16-26, Spring.
  32. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
  33. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
  34. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
  35. D'Amuri, Francesco & Marcucci, Juri, 2009. "‘Google it!’ Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
  36. Yoon, Gawon, 2009. "It's all the miners' fault: On the nonlinearity in U.S. unemployment rates," Economic Modelling, Elsevier, vol. 26(6), pages 1449-1454, November.
  37. Julie L. Hotchkiss & John C. Robertson, 2006. "Asymmetric labor force participation decisions over the business cycle: evidence from U.S. microdata," FRB Atlanta Working Paper 2006-08, Federal Reserve Bank of Atlanta.
  38. Liu, Yamei, 2000. "Overfitting and forecasting: linear versus non-linear time series models," ISU General Staff Papers 2000010108000014914, Iowa State University, Department of Economics.
  39. repec:kap:iaecre:v:13:y:2007:i:3:p:334-346 is not listed on IDEAS
  40. Miquel Clar-Lopez & Jordi López-Tamayo & Raúl Ramos, 2014. "Unemployment forecasts, time varying coefficient models and the Okun’s law in Spanish regions," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 247-262.
  41. Neugart, Michael, 2004. "Complicated dynamics in a flow model of the labor market," Journal of Economic Behavior & Organization, Elsevier, vol. 53(2), pages 193-213, February.
  42. McKay, Alisdair & Reis, Ricardo, 2008. "The brevity and violence of contractions and expansions," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 738-751, May.
  43. M. de Carvalho & K. F. Turkman & A. Rua, 2013. "Dynamic threshold modelling and the US business cycle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 535-550, August.
  44. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
  45. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2008. "Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4998-5013, July.
  46. Barnichon, Regis & Garda, Paula, 2016. "Forecasting unemployment across countries: The ins and outs," European Economic Review, Elsevier, vol. 84(C), pages 165-183.
  47. Ullrich Heilemann & Herman Stekler, 2010. "Perspectives on Evaluating Macroeconomic Forecasts," Working Papers 2010-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
  48. Miguel Artiach, 2011. "Second-order moments of frequency asymmetric cycles," Working Papers. Serie AD 2011-27, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  49. Costas Milas & Phil Rothman, 2005. "Multivariate STAR Unemployment Rate Forecasts," Econometrics 0502010, University Library of Munich, Germany.
  50. Ludlow, Jorge & Enders, Walter, 2000. "Estimating non-linear ARMA models using Fourier coefficients," International Journal of Forecasting, Elsevier, vol. 16(3), pages 333-347.
  51. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
  52. Joon Y. Park & Mototsugu Shintani, 2005. "Testing for a Unit Root against Transitional Autoregressive Models," Vanderbilt University Department of Economics Working Papers 05010, Vanderbilt University Department of Economics.
  53. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
  54. Peat, Maurice & Stevenson, Max, 1996. "Asymmetry in the business cycle: Evidence from the Australian labour market," Journal of Economic Behavior & Organization, Elsevier, vol. 30(3), pages 353-368, September.
  55. Hui Feng & Jia Liu, 2003. "A SETAR model for Canadian GDP: non-linearities and forecast comparisons," Applied Economics, Taylor & Francis Journals, vol. 35(18), pages 1957-1964.
  56. Floros, Ch., 2005. "Forecasting the UK Unemployment Rate: Model Comparisons," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(4), pages 57-72.
  57. Qin, Ting & Enders, Walter, 2008. "In-sample and out-of-sample properties of linear and nonlinear Taylor rules," Journal of Macroeconomics, Elsevier, vol. 30(1), pages 428-443, March.
  58. D. Jones & Maurice Peat & Max Stevenson, 1996. "Does the Process of Spatial Aggregation of U.K. Unemplyment Rate Series Serve to Induce or Remove Evidence of Asymmetry in the Business Cycle," Working Paper Series 67, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  59. Benoit Bellone, 2005. "Classical Estimation of Multivariate Markov-Switching Models using MSVARlib," Econometrics 0508017, University Library of Munich, Germany.
  60. repec:emu:wpaper:dp15-01.pdf is not listed on IDEAS
  61. Skalin, Joakim & Teräsvirta, Timo, 2002. "Modeling Asymmetries And Moving Equilibria In Unemployment Rates," Macroeconomic Dynamics, Cambridge University Press, vol. 6(2), pages 202-241, April.
  62. Thomas B. King, 2005. "Labor productivity and job-market flows: trends, cycles, and correlations," Supervisory Policy Analysis Working Papers 2005-04, Federal Reserve Bank of St. Louis.
  63. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.
  64. Li, Jing, 2006. "Testing Granger Causality in the presence of threshold effects," International Journal of Forecasting, Elsevier, vol. 22(4), pages 771-780.
  65. Belaire-Franch Jorge & Contreras Dulce, 2003. "An Assessment of International Business Cycle Asymmetries using Clements and Krolzig's Parametric Approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(4), pages 1-11, March.
  66. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
  67. Kurt Graden Lunsford, 2023. "Business Cycles and Low-Frequency Fluctuations in the US Unemployment Rate," Working Papers 23-19, Federal Reserve Bank of Cleveland.
  68. Tarlok Singh, 2012. "Testing nonlinearities in economic growth in the OECD countries: an evidence from SETAR and STAR models," Applied Economics, Taylor & Francis Journals, vol. 44(30), pages 3887-3908, October.
  69. Ayman Mnasri & Zouhair Mrabet & Mouyad Alsamara, 2023. "A new quadratic asymmetric error correction model: does size matter?," Empirical Economics, Springer, vol. 65(1), pages 33-64, July.
  70. Max Stevenson & Maurice Peat, 2000. "Forecasting Australian Unemployment Rates," Australian Journal of Labour Economics (AJLE), Bankwest Curtin Economics Centre (BCEC), Curtin Business School, vol. 4(1), pages 41-55, March.
  71. Heather M. Anderson, 2002. "Choosing Lag Lengths in Nonlinear Dynamic Models," Monash Econometrics and Business Statistics Working Papers 21/02, Monash University, Department of Econometrics and Business Statistics.
  72. Diego Romero‐Ávila & Carlos Usabiaga, 2007. "Unit Root Tests, Persistence, and the Unemployment Rate of the U.S. States," Southern Economic Journal, John Wiley & Sons, vol. 73(3), pages 698-716, January.
  73. Laura Brown & Saeed Moshiri, 2004. "Unemployment variation over the business cycles: a comparison of forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 497-511.
  74. José Cancelo, 2007. "Cyclical Asymmetries in Unemployment Rates: International Evidence," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(3), pages 334-346, August.
  75. Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
  76. Patrick J. Wilson & L.J. Perry, 2004. "Forecasting Australian Unemployment Rates using Spectral Analysis," Australian Journal of Labour Economics (AJLE), Bankwest Curtin Economics Centre (BCEC), Curtin Business School, vol. 7(4), pages 459-480, December.
  77. Ginger M. Davis & Katherine B. Ensor, 2007. "Multivariate Time‐Series Analysis With Categorical and Continuous Variables in an Lstr Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 867-885, November.
  78. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Georgios Sermpinis & Charalampos Stasinakis & Konstantinos Theofilatos & Andreas Karathanasopoul, 2014. "Inflation and Unemployment Forecasting with Genetic Support Vector Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 471-487, September.
  79. Christos Katris, 2020. "Prediction of Unemployment Rates with Time Series and Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 673-706, February.
  80. Brent Meyer & Murat Tasci, 2015. "Lessons for forecasting unemployment in the United States: use flow rates, mind the trend," FRB Atlanta Working Paper 2015-1, Federal Reserve Bank of Atlanta.
  81. Sami Saafi & Meriem Haj mohamed & Abdeljelil Farhat, 2015. "Is there a causal relationship between unemployment and informal economy in Tunisia: evidence from linear and non-linear Granger causality," Economics Bulletin, AccessEcon, vol. 35(2), pages 1191-1204.
  82. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
  83. Bradley T. Ewing & Jamie Brown Kruse, 2002. "The Impact of Project Impact on the Wilmington, North Carolina, Labor Market," Public Finance Review, , vol. 30(4), pages 296-309, July.
  84. Gunnar Bårdsen & Stan Hurn & Zoë McHugh, 2002. "A smooth-transition model of the Australian unemployment rate," Working Paper Series 1002, Department of Economics, Norwegian University of Science and Technology, revised 01 Jul 2003.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.