Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Clements, Michael P. & Smith, Jeremy, 1997.
"The performance of alternative forecasting methods for SETAR models,"
International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
- Clements, Michael P & Smith, Jeremy, 1996. "Performance of Alternative Forecasting Methods for Setar Models," The Warwick Economics Research Paper Series (TWERPS) 467, University of Warwick, Department of Economics.
- Clements, Michael P. & Smith, Jeremy, 1996. "The Performance of Alternative Forecasting Methods for SETAR Models," Economic Research Papers 268737, University of Warwick - Department of Economics.
- Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007.
"Contemporaneous threshold autoregressive models: Estimation, testing and forecasting,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
- Michael J. Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous threshold autoregressive models: estimation, testing and forecasting," Working Papers 2003-024, Federal Reserve Bank of St. Louis.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2007. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Discussion Papers 5_2007, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Department of Economics Working Papers 2006-04, Universidad Torcuato Di Tella.
- Clements, Michael P. & Smith, Jeremy, 1998.
"Evaluating The Forecast Densities Of Linear And Non-Linear Models: Applications To Output Growth And Unemployment,"
Economic Research Papers
268791, University of Warwick - Department of Economics.
- Clements, M.P. & Smith J., 1998. "Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment," The Warwick Economics Research Paper Series (TWERPS) 509, University of Warwick, Department of Economics.
- Potter, Simon M, 1995.
"A Nonlinear Approach to US GNP,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
- Simon M. Potter, 1993. "A Nonlinear Approach to U.S. GNP," UCLA Economics Working Papers 693, UCLA Department of Economics.
- De Gooijer, Jan G. & De Bruin, Paul T., 1998. "On forecasting SETAR processes," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 7-14, January.
- De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
- Makridakis, Spyros, 1989. "Why combining works?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 601-603.
- Zellner, Arnold & Tobias, Justin, 1998.
"A Note on Aggregation, Disaggregation and Forecasting Performance,"
CUDARE Working Papers
198677, University of California, Berkeley, Department of Agricultural and Resource Economics.
- Zellner, Arnold & Tobias, Justin, 2004. "A Note on Aggregation, Disaggregation and Forecasting Performance," Staff General Research Papers Archive 12371, Iowa State University, Department of Economics.
- Tobias, Justin & Zellner, Arnold, 2000. "A Note on Aggregation, Disaggregation and Forecasting Performance," Staff General Research Papers Archive 12024, Iowa State University, Department of Economics.
- Yin-Wong Cheung, 2007.
"An empirical model of daily highs and lows,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
- Yin-Wong Cheung, 2006. "An Empirical Model of Daily Highs and Lows," CESifo Working Paper Series 1695, CESifo.
- Yin-wong Cheung, 2006. "An Empirical Model of Daily Highs and Lows," Working Papers 072006, Hong Kong Institute for Monetary Research.
- Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
- repec:bla:ecorec:v:77:y:2001:i:237:p:160-66 is not listed on IDEAS
- Clements, Michael P & Smith, Jeremy, 1999.
"A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
- Clements, Michael P & Smith, Jeremy, 1996. "A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models," The Warwick Economics Research Paper Series (TWERPS) 464, University of Warwick, Department of Economics.
- Clementrs, Michael P. & Smith, Jeremy, 1997. "A Monte Carlo study of the forecasting performance of empirical SETAR models," Economic Research Papers 268734, University of Warwick - Department of Economics.
- Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
- Bruce E. Hansen, 2000.
"Sample Splitting and Threshold Estimation,"
Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
- Bruce E. Hansen, 1996. "Sample Splitting and Threshold Estimation," Boston College Working Papers in Economics 319., Boston College Department of Economics, revised 12 May 1998.
- Fiess, Norbert M & MacDonald, Ronald, 2002. "Towards the fundamentals of technical analysis: analysing the information content of High, Low and Close prices," Economic Modelling, Elsevier, vol. 19(3), pages 353-374, May.
- García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
- Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
- Hansen, Bruce E, 1996.
"Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis,"
Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
- Hansen, B.E., 1991. "Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis," RCER Working Papers 296, University of Rochester - Center for Economic Research (RCER).
- Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
- Ólan T. Henry & Nilss Olekalns & Peter M. Summers, 2001. "Exchange Rate Instability: A Threshold Autoregressive Approach," The Economic Record, The Economic Society of Australia, vol. 77(237), pages 160-166, June.
- Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Francis X. Diebold & Jose A. Lopez, 1995.
"Forecast evaluation and combination,"
Research Paper
9525, Federal Reserve Bank of New York.
- Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
- Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
- M. S. Al‐Qassam & J. A. Lane, 1989. "Forecasting Exponential Autoregressive Models Of Order 1," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(2), pages 95-113, March.
- Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
- Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
- Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
- Philip Rothman, 1998.
"Forecasting Asymmetric Unemployment Rates,"
The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 164-168, February.
- Philip Rothman, "undated". "Forecasting Asymmetric Unemployment Rates," Working Papers 9618, East Carolina University, Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liang-Ching Lin & Li-Hsien Sun, 2019. "Modeling financial interval time series," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-20, February.
- Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
- Liang-Ching Lin & Hsiang-Lin Chien & Sangyeol Lee, 2021. "Symbolic interval-valued data analysis for time series based on auto-interval-regressive models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 295-315, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
- Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007.
"Contemporaneous threshold autoregressive models: Estimation, testing and forecasting,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
- Michael J. Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous threshold autoregressive models: estimation, testing and forecasting," Working Papers 2003-024, Federal Reserve Bank of St. Louis.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2007. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Discussion Papers 5_2007, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Department of Economics Working Papers 2006-04, Universidad Torcuato Di Tella.
- Hui Feng & Jia Liu, 2003.
"A SETAR model for Canadian GDP: non-linearities and forecast comparisons,"
Applied Economics, Taylor & Francis Journals, vol. 35(18), pages 1957-1964.
- Hui Feng & Jia Liu, 2002. "A SETAR Model for Canadian GDP: Non-Linearities and Forecast Comparisons," Econometrics Working Papers 0206, Department of Economics, University of Victoria.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
- Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003.
"On SETAR non-linearity and forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
- Clements, M.P. & Franses, Ph.H.B.F. & Smith, J., 1999. "On SETAR non- linearity and forecasting," Econometric Institute Research Papers EI 9914-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Gloria Gonzalez-Rivera & Javier Arroyo & Carlos Mate, 2011. "Forecasting with Interval and Histogram Data. Some Financial Applications," Working Papers 201438, University of California at Riverside, Department of Economics.
- Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
- Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
- Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015.
"Aggregate volatility expectations and threshold CAPM,"
The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
- Eser Arisoy & Aslihan Altay-Salih & Levent Akdeniz, 2015. "Aggregate Volatility Expectations and Threshold CAPM," Post-Print hal-01634175, HAL.
- Clements, Michael P. & Smith, Jeremy, 1997.
"The performance of alternative forecasting methods for SETAR models,"
International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
- Clements, Michael P. & Smith, Jeremy, 1996. "The Performance of Alternative Forecasting Methods for SETAR Models," Economic Research Papers 268737, University of Warwick - Department of Economics.
- Clements, Michael P & Smith, Jeremy, 1996. "Performance of Alternative Forecasting Methods for Setar Models," The Warwick Economics Research Paper Series (TWERPS) 467, University of Warwick, Department of Economics.
- Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
- Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009.
"A high-low model of daily stock price ranges,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
- Yan-Leung Cheung & Yin-Wong Cheung & Alan T.K. Wan, 2008. "A High-Low Model of Daily Stock Price Ranges," CESifo Working Paper Series 2387, CESifo.
- Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A High-Low Model of Daily Stock Price Ranges," Working Papers 032009, Hong Kong Institute for Monetary Research.
- Clements, Michael P & Smith, Jeremy, 1999.
"A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
- Clements, Michael P & Smith, Jeremy, 1996. "A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models," The Warwick Economics Research Paper Series (TWERPS) 464, University of Warwick, Department of Economics.
- Clementrs, Michael P. & Smith, Jeremy, 1997. "A Monte Carlo study of the forecasting performance of empirical SETAR models," Economic Research Papers 268734, University of Warwick - Department of Economics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Fiszeder, Piotr & Perczak, Grzegorz, 2016. "Low and high prices can improve volatility forecasts during periods of turmoil," International Journal of Forecasting, Elsevier, vol. 32(2), pages 398-410.
- Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012.
"Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range,"
International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Working Papers in Economics 11/22, University of Canterbury, Department of Economics and Finance.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Documentos de Trabajo del ICAE 2011-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chen, C.W.S. & Gerlach, R. & Hwang, B.B.K. & McAleer, M.J., 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range," Econometric Institute Research Papers EI 2011-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2011-11-07 (Econometrics)
- NEP-ETS-2011-11-07 (Econometric Time Series)
- NEP-FMK-2011-11-07 (Financial Markets)
- NEP-FOR-2011-11-07 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w201128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.