IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2002-21.html
   My bibliography  Save this paper

Choosing Lag Lengths in Nonlinear Dynamic Models

Author

Listed:
  • Heather M. Anderson

Abstract

Given that it is quite impractical to use standard model selection criteria in a nonlinear modeling context, the builders of nonlinear models often choose lag length by setting it equal to the lag length chosen for a linear autoregression of the data. This paper studies the performance of this procedure in a variety of circumstances, and then proposes some new and simple model selection procedures, based on linear approximations of the nonlinear forms. The idea here is to apply standard selection criteria to these linear approximations, rather than to autoregressions that make no provision for nonlinear behavior. A simulation study compares the properties of these proposed procedures with the properties of linear selection procedures.

Suggested Citation

  • Heather M. Anderson, 2002. "Choosing Lag Lengths in Nonlinear Dynamic Models," Monash Econometrics and Business Statistics Working Papers 21/02, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2002-21
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2002/wp21-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    2. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    3. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    4. Anderson, Heather M. & Vahid, Farshid, 2001. "Predicting The Probability Of A Recession With Nonlinear Autoregressive Leading-Indicator Models," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 482-505, September.
    5. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    6. Clive Granger & Jin‐Lung Lin, 1994. "Using The Mutual Information Coefficient To Identify Lags In Nonlinear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(4), pages 371-384, July.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    9. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826, Elsevier.
    10. Philip Rothman, 1998. "Forecasting Asymmetric Unemployment Rates," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 164-168, February.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mavromaras, Kostas & Polidano, Cain, 2011. "NILS Working paper no 165. Improving the employment rates of people with disabilities through vocational education," NILS Working Papers 26068, National Institute of Labour Studies.
    2. Mavromaras, Kostas & Polidano, Cain, 2011. "Improving the Employment Rates of People with Disabilities through Vocational Education," IZA Discussion Papers 5548, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corinne Perraudin, 1995. "La dynamique asymétrique de l'emploi au cours du cycle," Économie et Prévision, Programme National Persée, vol. 120(4), pages 121-139.
    2. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    3. Marlon Fritz & Thomas Gries & Yuanhua Feng, 2019. "Growth Trends and Systematic Patterns of Booms and Busts‐Testing 200 Years of Business Cycle Dynamics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(1), pages 62-78, February.
    4. Lopes, Artur Silva & Zsurkis, Gabriel Florin, 2017. "Are linear models really unuseful to describe business cycle data?," Economics Discussion Papers 2017-5, Kiel Institute for the World Economy (IfW Kiel).
    5. Simon Potter, 1999. "Nonlinear Time Series Modelling: An Introduction," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 505-528, December.
    6. Artur Silva Lopes & Gabriel Florin Zsurkis, 2019. "Are linear models really unuseful to describe business cycle data?," Applied Economics, Taylor & Francis Journals, vol. 51(22), pages 2355-2376, May.
    7. KIANI, Khurshid M., 2007. "Business Cycle Asymmetries In Stock Returns: Robust Evidence," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(2), pages 99-120.
    8. Allan D. Brunner, 1997. "On The Dynamic Properties Of Asymmetric Models Of Real GNP," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 321-352, May.
    9. George Athanasopoulos & Heather M. Anderson & Farshid Vahid, 2007. "Nonlinear autoregressive leading indicator models of output in G-7 countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 63-87.
    10. Khurshid Kiani, 2005. "Detecting Business Cycle Asymmetries Using Artificial Neural Networks and Time Series Models," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 65-89, August.
    11. Liu, Yamei, 2000. "Overfitting and forecasting: linear versus non-linear time series models," ISU General Staff Papers 2000010108000014914, Iowa State University, Department of Economics.
    12. Ghosn, Sandra, 2014. "Le rôle de la psychologie dans les dynamiques de la production, des inégalités et de la redistribution," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14330 edited by Jacques, Jean-François.
    13. Donald W.K. Andrews, 1992. "An Introduction to Econometric Applications of Functional Limit Theory for Dependent Random Variables," Cowles Foundation Discussion Papers 1020, Cowles Foundation for Research in Economics, Yale University.
    14. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    15. Pablo Mejia-Reyes & Denise Osborn & Marianne Sensier, 2010. "Modelling real exchange rate effects on output performance in Latin America," Applied Economics, Taylor & Francis Journals, vol. 42(19), pages 2491-2503.
    16. Diego Valderrama, 2002. "Nonlinearities in international business cycles," Working Paper Series 2002-23, Federal Reserve Bank of San Francisco.
    17. Daniel J. Henderson & Christopher F. Parmeter & Liangjun Su, 2017. "M-Estimation of a Nonparametric Threshold Regression Model," Working Papers 2017-15, University of Miami, Department of Economics.
    18. Nadir Ocal & Denise R. Osborn, 2000. "Business cycle non-linearities in UK consumption and production," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 27-43.
    19. Silva Lopes, Artur C. & Florin Zsurkis, Gabriel, 2015. "Revisiting non-linearities in business cycles around the world," MPRA Paper 65668, University Library of Munich, Germany.

    More about this item

    Keywords

    Nonlinear time series models; Neural networks; Model selection criteria; Polynomial approximations; Volterra expansions.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2002-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.