Forecasting Unemployment in Russia Using Machine Learning Methods
Author
Abstract
Suggested Citation
DOI: 10.31477/rjmf.202201.73
Download full text from publisher
References listed on IDEAS
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
- Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2016.
"Unemployment and Business Cycles,"
Econometrica, Econometric Society, vol. 84(4), pages 1523-1569, July.
- Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2016. "Unemployment and Business Cycles," Econometrica, Econometric Society, vol. 84, pages 1523-1569, July.
- Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2013. "Unemployment and Business Cycles," NBER Working Papers 19265, National Bureau of Economic Research, Inc.
- Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2013. "Unemployment and business cycles," International Finance Discussion Papers 1089, Board of Governors of the Federal Reserve System (U.S.).
- Norman R. Swanson & Halbert White, 1997.
"A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks,"
The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
- Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
- Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, University Library of Munich, Germany.
- Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Livia Paranhos, 2021. "Predicting Inflation with Recurrent Neural Networks," Papers 2104.03757, arXiv.org, revised Oct 2023.
- Gupta, Rangan & Pierdzioch, Christian & Salisu, Afees A., 2022.
"Oil-price uncertainty and the U.K. unemployment rate: A forecasting experiment with random forests using 150 years of data,"
Resources Policy, Elsevier, vol. 77(C).
- Rangan Gupta & Christian Pierdzioch & Afees A. Salisu, 2020. "Oil-Price Uncertainty and the U.K. Unemployment Rate: A Forecasting Experiment with Random Forests Using 150 Years of Data," Working Papers 202095, University of Pretoria, Department of Economics.
- Croushore, Dean & Stark, Tom, 2001.
"A real-time data set for macroeconomists,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
- Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
- Naccarato, Alessia & Falorsi, Stefano & Loriga, Silvia & Pierini, Andrea, 2018. "Combining official and Google Trends data to forecast the Italian youth unemployment rate," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 114-122.
- Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2022.
"A Real-Time Historical Database of Macroeconomic Indicators for Russia,"
Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 88-103, March.
- Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2021. "A Real-Time Historical Database of Macroeconomic Indicators for Russia," Bank of Russia Working Paper Series wps76, Bank of Russia.
- David H. Autor & David Dorn & Gordon H. Hanson, 2015.
"Untangling Trade and Technology: Evidence from Local Labour Markets,"
Economic Journal, Royal Economic Society, vol. 0(584), pages 621-646, May.
- Autor, David & Dorn, David & Hanson, Gordon H., 2013. "Untangling Trade and Technology: Evidence from Local Labor Markets," IZA Discussion Papers 7329, Institute of Labor Economics (IZA).
- David H. Autor & David Dorn & Gordon H. Hanson, 2013. "Untangling Trade and Technology: Evidence from Local Labor Markets," NBER Working Papers 18938, National Bureau of Economic Research, Inc.
- Paranhos, Livia, 2021. "Predicting Inflation with Neural Networks," The Warwick Economics Research Paper Series (TWERPS) 1344, University of Warwick, Department of Economics.
- James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
- Philip Rothman, 1998.
"Forecasting Asymmetric Unemployment Rates,"
The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 164-168, February.
- Philip Rothman, "undated". "Forecasting Asymmetric Unemployment Rates," Working Papers 9618, East Carolina University, Department of Economics.
- Evgeny Pavlov, 2020. "Forecasting Inflation in Russia Using Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 57-73, March.
- Ksenia Mayorova & Nikita Fokin, 2021. "Nowcasting Growth Rates of Russia's Export and Import by Commodity Group," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 34-48, September.
- Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
- Simionescu, Mihaela & Cifuentes-Faura, Javier, 2022. "Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 1-21.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
- Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
- Hannes Mueller & Christopher Rauh, 2022.
"The Hard Problem of Prediction for Conflict Prevention,"
Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2440-2467.
- Hannes Mueller & Christopher Rauh, 2019. "The hard problem of prediction for conflict prevention," Cahiers de recherche 2019-02, Universite de Montreal, Departement de sciences economiques.
- Mueller, H. & Rauh, C., 2020. "The Hard Problem of Prediction for Conflict Prevention," Cambridge Working Papers in Economics 2015, Faculty of Economics, University of Cambridge.
- Hannes Mueller & Christopher Rauh, 2019. "The Hard Problem of Prediction for Conflict Prevention," Cahiers de recherche 02-2019, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Hannes Mueller & Christopher Rauh, 2021. "The Hard Problem of Prediction for Conflict Prevention," Working Papers 1244, Barcelona School of Economics.
- Mueller, H. & Rauh, C., 2021. "The Hard Problem of Prediction for Conflict Prevention," Cambridge Working Papers in Economics 2103, Faculty of Economics, University of Cambridge.
- Mueller, Hannes & Rauh, Christopher, 2019. "The Hard Problem of Prediction for Conflict Prevention," CEPR Discussion Papers 13748, C.E.P.R. Discussion Papers.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
- Gallego, Jorge & Rivero, Gonzalo & Martínez, Juan, 2021.
"Preventing rather than punishing: An early warning model of malfeasance in public procurement,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 360-377.
- Gallego, J & Rivero, G & Martínez, J.D., 2018. "Preventing rather than Punishing: An Early Warning Model of Malfeasance in Public Procurement," Documentos de Trabajo 16724, Universidad del Rosario.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Mark Musumba & Naureen Fatema & Shahriar Kibriya, 2021. "Prevention Is Better Than Cure: Machine Learning Approach to Conflict Prediction in Sub-Saharan Africa," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
- Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022.
"Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels,"
Energy Economics, Elsevier, vol. 105(C).
- Douglas Silveira & Silvinha Vasconcelos & Marcelo Resende & Daniel O. Cajueiro, 2021. "Won't Get Fooled Again: A Supervised Machine Learning Approach for Screening Gasoline Cartels," CESifo Working Paper Series 8835, CESifo.
- Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
- Du, Tianyu & Kanodia, Ayush & Brunborg, Herman & Vafa, Keyon & Athey, Susan, 2024.
"Labor-LLM: Language-Based Occupational Representations with Large Language Models,"
Research Papers
4188, Stanford University, Graduate School of Business.
- Susan Athey & Herman Brunborg & Tianyu Du & Ayush Kanodia & Keyon Vafa, 2024. "LABOR-LLM: Language-Based Occupational Representations with Large Language Models," Papers 2406.17972, arXiv.org, revised Dec 2024.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021.
"Optimal Targeting in Fundraising: A Machine-Learning Approach,"
Economics working papers
2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," CESifo Working Paper Series 9037, CESifo.
- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
More about this item
Keywords
unemployment forecasting; machine learning; random forest; elastic net; neural networks; gradient boosting;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:81:y:2022:i:1:p:73-87. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.