IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i5p800-822.html
   My bibliography  Save this article

Bootstrap prediction inference of nonlinear autoregressive models

Author

Listed:
  • Kejin Wu
  • Dimitris N. Politis

Abstract

The nonlinear autoregressive (NLAR) model plays an important role in modeling and predicting time series. One‐step ahead prediction is straightforward using the NLAR model, but the multi‐step ahead prediction is cumbersome. For instance, iterating the one‐step ahead predictor is a convenient strategy for linear autoregressive (LAR) models, but it is suboptimal under NLAR. In this article, we first propose a simulation and/or bootstrap algorithm to construct optimal point predictors under an L1 or L2 loss criterion. In addition, we construct bootstrap prediction intervals in the multi‐step ahead prediction problem; in particular, we develop an asymptotically valid quantile prediction interval as well as a pertinent prediction interval for future values. To correct the undercoverage of prediction intervals with finite samples, we further employ predictive – as opposed to fitted – residuals in the bootstrap process. Simulation and empirical studies are also given to substantiate the finite sample performance of our methods.

Suggested Citation

  • Kejin Wu & Dimitris N. Politis, 2024. "Bootstrap prediction inference of nonlinear autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(5), pages 800-822, September.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:5:p:800-822
    DOI: 10.1111/jtsa.12739
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12739
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:5:p:800-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.