Prediction of Unemployment Rates with Time Series and Machine Learning Techniques
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-019-09908-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Olivier J. Blanchard & Lawrence H. Summers, 1986.
"Hysteresis and the European Unemployment Problem,"
NBER Chapters, in: NBER Macroeconomics Annual 1986, Volume 1, pages 15-90,
National Bureau of Economic Research, Inc.
- Olivier J. Blanchard & Lawrence H. Summers, 1986. "Hysteresis and the European Unemployment Problem," Working papers 427, Massachusetts Institute of Technology (MIT), Department of Economics.
- Olivier J. Blanchard & Lawrence H. Summers, 1986. "Hysteresis and the European Unemployment Problem," NBER Working Papers 1950, National Bureau of Economic Research, Inc.
- Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
- Geraint Johnes, 1999. "Forecasting unemployment," Applied Economics Letters, Taylor & Francis Journals, vol. 6(9), pages 605-607.
- John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
- Floros, Ch., 2005. "Forecasting the UK Unemployment Rate: Model Comparisons," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(4), pages 57-72.
- Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
- Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993.
"Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests,"
Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
- Tom Doan, "undated". "REGWHITENNTEST: RATS procedure to perform White neural network test on regression," Statistical Software Components RTS00183, Boston College Department of Economics.
- Tom Doan, "undated". "REGRESET: RATS procedure to perform Ramsey RESET test on regression," Statistical Software Components RTS00181, Boston College Department of Economics.
- Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
- Gil-Alana, Luis A, 2001.
"A Fractionally Integrated Exponential Model for UK Unemployment,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(5), pages 329-340, August.
- Gil-Alaña, Luis A., 2000. "A fractionally integrated exponential model for UK unemployment," SFB 373 Discussion Papers 2000,67, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
- Elena Olmedo, 2014. "Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 183-197, February.
- Blanchard, Olivier J. & Summers, Lawrence H., 1987.
"Hysteresis in unemployment,"
European Economic Review, Elsevier, vol. 31(1-2), pages 288-295.
- Olivier J. Blanchard, 1986. "Hysteresis and Unemployment," Working papers 430, Massachusetts Institute of Technology (MIT), Department of Economics.
- Olivier J. Blanchard & Lawrence H. Summers, 1986. "Hysteresis in Unemployment," NBER Working Papers 2035, National Bureau of Economic Research, Inc.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Benoit B. Mandelbrot, 1972. "Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 1, number 3, pages 259-290, National Bureau of Economic Research, Inc.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Philip Rothman, 1998.
"Forecasting Asymmetric Unemployment Rates,"
The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 164-168, February.
- Philip Rothman, "undated". "Forecasting Asymmetric Unemployment Rates," Working Papers 9618, East Carolina University, Department of Economics.
- De Gooijer, Jan G. & Ray, Bonnie K. & Krager, Horst, 1998. "Forecasting exchange rates using TSMARS," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 513-534, June.
- Christos Katris, 2015. "Dynamics of Greece's unemployment rate: effect of the economic crisis and forecasting models," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 5(2), pages 127-142.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anastasios Petropoulos & Vassilis Siakoulis & Konstantinos P. Panousis & Loukas Papadoulas & Sotirios Chatzis, 2023. "Macroeconomic forecasting and sovereign risk assessment using deep learning techniques," Papers 2301.09856, arXiv.org.
- Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
- Philip Hans Franses & Thomas Wiemann, 2020. "Intertemporal Similarity of Economic Time Series: An Application of Dynamic Time Warping," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 59-75, June.
- Mustafa Yurtsever, 2023. "Unemployment rate forecasting: LSTM-GRU hybrid approach," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 57(1), pages 1-9, December.
- Rendra Gustriansyah & Juhaini Alie & Nazori Suhandi, 2023. "Modeling the number of unemployed in South Sumatra Province using the exponential smoothing methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1725-1737, April.
- Mihai Mutascu & Scott W. Hegerty, 2023.
"Predicting the contribution of artificial intelligence to unemployment rates: an artificial neural network approach,"
Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(2), pages 400-416, June.
- Mihai Mutascu & Scott Hegerty, 2023. "Predicting the contribution of artificial intelligence to unemployment rates: an artificial neural network approach," Post-Print hal-04273887, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christos Katris & Manolis G. Kavussanos, 2021. "Time series forecasting methods for the Baltic dry index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1540-1565, December.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
- Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2008.
"Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4998-5013, July.
- Luis A. Gil-Alana & Guglielmo M. Caporale, 2008. "Modelling the US, the UK and Japanese unemployment rates. Fractional integrationand structural breaks," Faculty Working Papers 11/08, School of Economics and Business Administration, University of Navarra.
- Floros, Ch., 2005. "Forecasting the UK Unemployment Rate: Model Comparisons," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(4), pages 57-72.
- Mihai Mutascu & Scott W. Hegerty, 2023.
"Predicting the contribution of artificial intelligence to unemployment rates: an artificial neural network approach,"
Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(2), pages 400-416, June.
- Mihai Mutascu & Scott Hegerty, 2023. "Predicting the contribution of artificial intelligence to unemployment rates: an artificial neural network approach," Post-Print hal-04273887, HAL.
- Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020.
"The economic importance of rare earth elements volatility forecasts,"
International Review of Financial Analysis, Elsevier, vol. 71(C).
- Juliane Proelss & Denis Schweizer & Volker Seiler, 2019. "The economic importance of rare earth elements volatility forecasts," Post-Print hal-02983233, HAL.
- Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
- Shuping Shi & Jun Yu, 2023. "Volatility Puzzle: Long Memory or Antipersistency," Management Science, INFORMS, vol. 69(7), pages 3861-3883, July.
- Luis A. Gil‐Alana & S. G. Brian Henry, 2003.
"Fractional Integration and the Dynamics of UK Unemployment,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(2), pages 221-239, May.
- Gil-Alaña, Luis A. & Henry, Brian, 2000. "Fractional integration and the dynamics of UK unemployment," SFB 373 Discussion Papers 2000,14, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Luis A. Gil-Alana & S.G. Brian Henry, 2003. "Fractional Integration and the Dynamics of UK Unemployment," Faculty Working Papers 10/03, School of Economics and Business Administration, University of Navarra.
- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521770415, November.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
- Ata Assaf, 2006. "Canadian REITs and Stock Prices: Fractional Cointegration and Long Memory," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 441-462.
- Jose Maria Fernandez-Crehuet & Luis Alberiko Gil-Alana & Cristina Martí Barco, 2020. "Unemployment and Fertility: A Long Run Relationship," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(3), pages 1177-1196, December.
- Mtiraoui, Amine & Boubaker, Heni & BelKacem, Lotfi, 2023. "A hybrid approach for forecasting bitcoin series," Research in International Business and Finance, Elsevier, vol. 66(C).
- Richard T. Baillie & George Kapetanios, 2006. "Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates," Working Papers 570, Queen Mary University of London, School of Economics and Finance.
- Ana Pérez & Esther Ruiz, 2002.
"Modelos de memoria larga para series económicas y financieras,"
Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
- Pérez, Ana, 2001. "Modelos de memoria larga para series económicas y financieras," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS ds010101, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005.
"Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration,"
Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
- Morten Ø. Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison Of Parametric, Semiparametric, And Wavelet Estimators Of Fractional Integration," Working Paper 1189, Economics Department, Queen's University.
- Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999.
"Persistence in International Inflation Rates,"
Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
- Christopher F. Baum & John Barkoulas & Mustafa Caglayan, 1996. "Persistence in International Inflation Rates," Boston College Working Papers in Economics 333., Boston College Department of Economics.
More about this item
Keywords
FARIMA/GARCH; FARIMA; Neural networks; Support vector machines; Multivariate adaptive regression splines; Multiple steps ahead predictions; Forecasting accuracy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:2:d:10.1007_s10614-019-09908-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.