IDEAS home Printed from https://ideas.repec.org/r/ulb/ulbeco/2013-127979.html
   My bibliography  Save this item

Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
  2. Liu, Xiaohui & Zuo, Yijun, 2015. "CompPD: A MATLAB Package for Computing Projection Depth," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i02).
  3. Xiaohui Liu, 2017. "Fast implementation of the Tukey depth," Computational Statistics, Springer, vol. 32(4), pages 1395-1410, December.
  4. Edwin Fourrier-Nicolaï & Michel Lubrano, 2021. "Bayesian Inference for Parametric Growth Incidence Curves," Research on Economic Inequality, in: Research on Economic Inequality: Poverty, Inequality and Shocks, volume 29, pages 31-55, Emerald Group Publishing Limited.
  5. Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
  6. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
  7. Pavlo Mozharovskyi & Julie Josse & François Husson, 2017. "Nonparametric imputation by data depth," Working Papers 2017-72, Center for Research in Economics and Statistics.
  8. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2014. "Vector quantile regression," CeMMAP working papers CWP48/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  9. Jean-Paul Chavas, 2018. "On multivariate quantile regression analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 365-384, August.
  10. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
  11. Nadja Klein & Thomas Kneib, 2020. "Directional bivariate quantiles: a robust approach based on the cumulative distribution function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 225-260, June.
  12. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
  13. Zuo, Yijun, 2013. "Multidimensional medians and uniqueness," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 82-88.
  14. Hallin, Marc & Šiman, Miroslav, 2016. "Elliptical multiple-output quantile regression and convex optimization," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 232-237.
  15. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2016. "Multivariate Method Of Simulated Quantiles," Departmental Working Papers of Economics - University 'Roma Tre' 0212, Department of Economics - University Roma Tre.
  16. repec:cte:wsrepe:35465 is not listed on IDEAS
  17. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
  18. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
  19. Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2015. "Factorisable sparse tail event curves," SFB 649 Discussion Papers 2015-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  20. Pavel Boček & Miroslav Šiman, 2017. "On weighted and locally polynomial directional quantile regression," Computational Statistics, Springer, vol. 32(3), pages 929-946, September.
  21. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
  22. Liqun Yu & Nan Lin, 2017. "ADMM for Penalized Quantile Regression in Big Data," International Statistical Review, International Statistical Institute, vol. 85(3), pages 494-518, December.
  23. repec:spo:wpmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
  24. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
  25. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
  26. Bazovkin, Pavel & Mosler, Karl, 2012. "An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).
  27. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.
  28. Isabelle Charlier & Davy Paindaveine & Jérôme Saracco, 2016. "Multiple-Output Quantile Regression through Optimal Quantization," Working Papers ECARES ECARES 2016-18, ULB -- Universite Libre de Bruxelles.
  29. Nadja Klein & Torsten Hothorn & Luisa Barbanti & Thomas Kneib, 2022. "Multivariate conditional transformation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 116-142, March.
  30. repec:hal:spmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
  31. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
  32. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
  33. repec:hal:spmain:info:hdl:2441/6rign1j2jd9c69im80po26g4nt is not listed on IDEAS
  34. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
  35. repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
  36. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
  37. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
  38. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2015. "Vector quantile regression: an optimal transport approach," CeMMAP working papers 58/15, Institute for Fiscal Studies.
  39. Davy Paindaveine & Germain Van Bever, 2017. "Tyler Shape Depth," Working Papers ECARES ECARES 2017-29, ULB -- Universite Libre de Bruxelles.
  40. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
  41. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
  42. Davy Paindaveine & Germain Van Bever, 2015. "Discussion of “Multivariate Functional Outlier Detection”, by Mia Hubert, Peter Rousseeuw and Pieter Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 223-231, July.
  43. Feng, Sanying & Lian, Heng & Zhu, Fukang, 2016. "Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 139-150.
  44. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
  45. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
  46. Christian Francq & Jean-Michel Zakoïan, 2020. "Adaptiveness of the empirical distribution of residuals in semi- parametric conditional location scale models," Working Papers hal-02898909, HAL.
  47. Davy Paindaveine & Miroslav Šiman, 2012. "Computing multiple-output regression quantile regions from projection quantiles," Computational Statistics, Springer, vol. 27(1), pages 29-49, March.
  48. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
  49. Einmahl, J.H.J. & Li, Jun & Liu, Regina, 2015. "Bridging Centrality and Extremity : Refining Empirical Data Depth using Extreme Value Statistics," Discussion Paper 2015-020, Tilburg University, Center for Economic Research.
  50. Marco Alfò & Maria Francesca Marino & Maria Giovanna Ranalli & Nicola Salvati & Nikos Tzavidis, 2021. "M‐quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 122-146, January.
  51. repec:spo:wpmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
  52. Marc Hallin & Zudi Lu & Davy Paindaveine & Miroslav Siman, 2012. "Local Constant and Local Bilinear Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2012-003, ULB -- Universite Libre de Bruxelles.
  53. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Transmission of US and EU Economic Policy Uncertainty Shock to Asian Economies in Bad and Good Times," IZA Discussion Papers 13274, Institute of Labor Economics (IZA).
  54. repec:spo:wpmain:info:hdl:2441/6rign1j2jd9c69im80po26g4nt is not listed on IDEAS
  55. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
  56. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
  57. Daniel Hlubinka & Miroslav Šiman, 2015. "On generalized elliptical quantiles in the nonlinear quantile regression setup," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 249-264, June.
  58. Michele, Carlo de & Laniado Rodas, Henry, 2016. "Directional multivariate extremes in environmental phenomena," DES - Working Papers. Statistics and Econometrics. WS 23419, Universidad Carlos III de Madrid. Departamento de Estadística.
  59. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
  60. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
  61. Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020. "Scores for Multivariate Distributions and Level Sets," Papers 2002.09578, arXiv.org, revised Jun 2023.
  62. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
  63. Christophe Ley & Camille Sabbah & Thomas Verdebout, 2014. "A new concept of quantiles for directional data and the angular Mahalanobis depth," Working Papers ECARES ECARES 2013-23, ULB -- Universite Libre de Bruxelles.
  64. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
  65. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2016. "Vector Quantile Regression: An Optimal Transport Approach," SciencePo Working papers hal-03567920, HAL.
  66. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
  67. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  68. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
  69. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
  70. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
  71. Osipenko, Maria, 2021. "Directional assessment of traffic flow extremes," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 353-369.
  72. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
  73. Maicol Ochoa & Ignacio Cascos, 2022. "Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
  74. Linjie Wang & Jean‐Paul Chavas & Jian Li, 2024. "Dynamic linkages in agricultural and energy markets: A quantile impulse response approach," Agricultural Economics, International Association of Agricultural Economists, vol. 55(4), pages 639-676, July.
  75. Yves Dominicy & Pauliina Ilmonen & David Veredas, 2017. "Multivariate Hill Estimators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 108-142, April.
  76. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
  77. Agarwal, Gaurav & Tu, Wei & Sun, Ying & Kong, Linglong, 2022. "Flexible quantile contour estimation for multivariate functional data: Beyond convexity," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
  78. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
  79. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  80. repec:hum:wpaper:sfb649dp2015-034 is not listed on IDEAS
  81. Daniel Hlubinka & Lukáš Kotík & Miroslav Šiman, 2022. "Multivariate quantiles with both overall and directional probability interpretation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1586-1604, December.
  82. Feng, Xiang-Nan & Wang, Yifan & Lu, Bin & Song, Xin-Yuan, 2017. "Bayesian regularized quantile structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 234-248.
  83. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
  84. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
  85. Montes-Rojas, Gabriel, 2017. "Reduced form vector directional quantiles," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 20-30.
  86. Carlier, Guillaume & Chernozhukov, Victor & Galichon, Alfred, 2017. "Vector quantile regression beyond the specified case," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 96-102.
  87. Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
  88. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.