IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2017-71.html
   My bibliography  Save this paper

Fast computation of Tukey trimmed regions and median in dimension p > 2

Author

Listed:
  • Xiaohui Liu

    (School of Statistics, Research Center of Applied Statistics of Jiangxi University of Finance and Economics)

  • Karl Mosler

    (Institute of Econometrics and Statistics, University of Cologne)

  • Pavlo Mozharovskyi

    (CREST-ENSAI, Université Bretagne Loire)

Abstract

Given data in Rp, a Tukey K-trimmed region, shortly Tukey K-region or just Tukey region, is the set of all points that have at least Tukey depth K w.r.t. the data. As they are visual, affine equivariant and robust, Tukey regions are useful tools in nonparametric multivariate analysis. While these regions are easily defined and interpreted, their practical application is impeded by the lack of efficient computational procedures in dimension p > 2. We derive a strict bound on the number of facets of a Tukey region and construct a new efficient algorithm to compute the region, which runs much faster than existing ones. The new algorithm is compared with a slower exact algorithm, yielding always the same correct results. Finally, the approach is extended to an algorithm that efficiently calculates the innermost Tukey region and its barycenter, the Tukey median.

Suggested Citation

  • Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2017-71
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2017-71.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    2. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    3. Ruts, Ida & Rousseeuw, Peter J., 1996. "Computing depth contours of bivariate point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 153-168, November.
    4. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    5. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    6. Davy Paindaveine & Miroslav Šiman, 2012. "Computing multiple-output regression quantile regions from projection quantiles," Computational Statistics, Springer, vol. 27(1), pages 29-49, March.
    7. Koshevoy, Gleb A., 2002. "The Tukey Depth Characterizes the Atomic Measure," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 360-364, November.
    8. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    9. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    10. Xiaohui Liu, 2017. "Fast implementation of the Tukey depth," Computational Statistics, Springer, vol. 32(4), pages 1395-1410, December.
    11. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Rejoinder to ‘multivariate functional outlier detection’," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 269-277, July.
    12. Kong, Linglong & Zuo, Yijun, 2010. "Smooth depth contours characterize the underlying distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2222-2226, October.
    13. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    2. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    3. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    4. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    5. Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    6. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    7. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    8. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    9. Montes-Rojas, Gabriel, 2017. "Reduced form vector directional quantiles," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 20-30.
    10. repec:spo:wpmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    11. Pavel Boček & Miroslav Šiman, 2017. "On weighted and locally polynomial directional quantile regression," Computational Statistics, Springer, vol. 32(3), pages 929-946, September.
    12. Liu, Xiaohui & Zuo, Yijun & Wang, Zhizhong, 2013. "Exactly computing bivariate projection depth contours and median," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 1-11.
    13. repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    14. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Transmission of US and EU Economic Policy Uncertainty Shock to Asian Economies in Bad and Good Times," IZA Discussion Papers 13274, Institute of Labor Economics (IZA).
    15. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    16. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
    17. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    18. Stanislav Nagy, 2021. "Halfspace depth does not characterize probability distributions," Statistical Papers, Springer, vol. 62(3), pages 1135-1139, June.
    19. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    20. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    21. Davy Paindaveine & Germain Van Bever, 2015. "Discussion of “Multivariate Functional Outlier Detection”, by Mia Hubert, Peter Rousseeuw and Pieter Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 223-231, July.
    22. Wei, Bei & Lee, Stephen M.S., 2012. "Second-order accuracy of depth-based bootstrap confidence regions," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 112-123.
    23. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2017-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.