IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3272-d910734.html
   My bibliography  Save this article

Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach

Author

Listed:
  • Maicol Ochoa

    (Department of Statistics, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain)

  • Ignacio Cascos

    (Department of Statistics, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain)

Abstract

For a univariate distribution, its M -quantiles are obtained as solutions to asymmetric minimization problems dealing with the distance of a random variable to a fixed point. The asymmetry refers to the different weights awarded to the values of the random variable at either side of the fixed point. We focus on M -quantiles whose associated losses are given in terms of a power. In this setting, the classical quantiles are obtained for the first power, while the expectiles correspond to quadratic losses. The M -quantiles considered here are computed over distorted distributions, which allows to tune the weight awarded to the more central or peripheral parts of the distribution. These distorted M -quantiles are used in the multivariate setting to introduce novel families of central regions and their associated depth functions, which are further extended to the multiple output regression setting in the form of conditional and regression regions and conditional depths.

Suggested Citation

  • Maicol Ochoa & Ignacio Cascos, 2022. "Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3272-:d:910734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    2. Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
    3. Zuo, Yijun & Lai, Shaoyong, 2011. "Exact computation of bivariate projection depth and the Stahel-Donoho estimator," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1173-1179, March.
    4. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Ruts, Ida & Rousseeuw, Peter J., 1996. "Computing depth contours of bivariate point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 153-168, November.
    6. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    7. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:35465 is not listed on IDEAS
    2. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. repec:cte:wsrepe:28434 is not listed on IDEAS
    5. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    6. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    7. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    8. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    9. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    10. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    11. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    12. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    13. Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
    14. Xiaohui Liu, 2017. "Fast implementation of the Tukey depth," Computational Statistics, Springer, vol. 32(4), pages 1395-1410, December.
    15. Zuo, Yijun, 2013. "Multidimensional medians and uniqueness," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 82-88.
    16. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    17. Chakraborty, Biman & Chaudhuri, Probal, 1999. "A note on the robustness of multivariate medians," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 269-276, November.
    18. Marco Alfò & Maria Francesca Marino & Maria Giovanna Ranalli & Nicola Salvati & Nikos Tzavidis, 2021. "M‐quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 122-146, January.
    19. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    20. Struyf, Anja & Rousseeuw, Peter J., 2000. "High-dimensional computation of the deepest location," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 415-426, October.
    21. Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
    22. Małgorzata Kobylińska, 2021. "Spatial Diversity of Organic Farming in Poland," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3272-:d:910734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.