IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v167y2018icp97-113.html
   My bibliography  Save this article

Cone distribution functions and quantiles for multivariate random variables

Author

Listed:
  • Hamel, Andreas H.
  • Kostner, Daniel

Abstract

Set-valued quantiles for multivariate distributions with respect to a general convex cone are introduced which are based on a family of (univariate) distribution functions rather than on the joint distribution function. It is shown that these quantiles enjoy basically all the properties of univariate quantile functions. Relationships to families of univariate quantile functions and to depth functions are discussed. Finally, a corresponding Value-at-Risk for multivariate random variables as well as a stochastic (dominance) order based on quantiles are introduced via the set-valued approach.

Suggested Citation

  • Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
  • Handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:97-113
    DOI: 10.1016/j.jmva.2018.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17301082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laniado Rodas, Henry, 2015. "A Directional Multivariate Value at Risk," DES - Working Papers. Statistics and Econometrics. WS ws1501, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
    3. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    4. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    5. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    6. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    7. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
    8. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    9. Areski Cousin & Elena Di Bernadino, 2011. "On Multivariate Extensions of Value-at-Risk," Papers 1111.1349, arXiv.org, revised Apr 2013.
    10. Robert Serfling, 2010. "Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 915-936.
    11. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    12. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.
    13. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    14. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    15. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    2. Kuntal Som & V. Vetrivel, 2021. "On robustness for set-valued optimization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 905-925, April.
    3. Andreas H Hamel & Andreas Löhne, 2020. "Choosing sets: preface to the special issue on set optimization and applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 1-4, February.
    4. Tobias Fissler & Jana Hlavinov'a & Birgit Rudloff, 2019. "Elicitability and Identifiability of Systemic Risk Measures," Papers 1907.01306, arXiv.org, revised Oct 2019.
    5. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    6. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    7. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    8. Elisa Mastrogiacomo & Matteo Rocca, 2021. "Set optimization of set-valued risk measures," Annals of Operations Research, Springer, vol. 296(1), pages 291-314, January.
    9. Daniel Kostner, 2020. "Multi-criteria decision making via multivariate quantiles," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 73-88, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    2. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
    3. Michele, Carlo de & Laniado Rodas, Henry, 2016. "Directional multivariate extremes in environmental phenomena," DES - Working Papers. Statistics and Econometrics. WS 23419, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    6. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
    7. Merve Merakli & Simge Kucukyavuz, 2017. "Vector-Valued Multivariate Conditional Value-at-Risk," Papers 1708.01324, arXiv.org.
    8. Shushi, Tomer & Yao, Jing, 2020. "Multivariate risk measures based on conditional expectation and systemic risk for Exponential Dispersion Models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 178-186.
    9. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    11. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    12. Di Bernardino, E. & Fernández-Ponce, J.M. & Palacios-Rodríguez, F. & Rodríguez-Griñolo, M.R., 2015. "On multivariate extensions of the conditional Value-at-Risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 1-16.
    13. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    14. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.
    15. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    16. Hélène Cossette & Mélina Mailhot & Étienne Marceau & Mhamed Mesfioui, 2016. "Vector-Valued Tail Value-at-Risk and Capital Allocation," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 653-674, September.
    17. Areski Cousin & Elena Di Bernardino, 2013. "On Multivariate Extensions of Conditional-Tail-Expectation," Working Papers hal-00877386, HAL.
    18. Elena Di Bernardino & Clémentine Prieur, 2014. "Estimation of multivariate conditional-tail-expectation using Kendall's process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 241-267, June.
    19. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    20. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:97-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.