IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03567920.html
   My bibliography  Save this paper

Vector Quantile Regression: An Optimal Transport Approach

Author

Listed:
  • Guillaume Carlier

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Victor Chernozhukov
  • Alfred Galichon

    (ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique)

Abstract

We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y , taking values in Rd given covariates Z = z, taking values in Rk, is a map u --> QY jZ(u; z), which is monotone, in the sense of being a gradient of a convex function, and such that given that vector U follows a reference nonatomic distribution FU, for instance uniform distribution on a unit cube in Rd, the random vector QY jZ(U; z) has the distribution of Y conditional on Z = z. Moreover, we have a strong representation, Y = QY jZ(U;Z) almost surely, for some version of U. The vector quantile regression (VQR) is a linear model for CVQF of Y given Z. Under correct specification, the notion produces strong representation, Y = (U)> f(Z), for f(Z) denoting a known set of transformations of Z, where u --> (u)>f(Z) is a monotone map, the gradient of a convex function, and the quantile regression coefficients u --> (u) have the interpretations analogous to that of the standard scalar quantile regression. As f(Z) becomes a richer class of transformations of Z, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge-Kantorovich's optimal transportation problem at its core as a special case. In the classical case, where Y is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. An application to multiple Engel curve estimation is considered.

Suggested Citation

  • Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2016. "Vector Quantile Regression: An Optimal Transport Approach," Post-Print hal-03567920, HAL.
  • Handle: RePEc:hal:journl:hal-03567920
    DOI: 10.1214/15-AOS1401
    Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-03567920
    as

    Download full text from publisher

    File URL: https://sciencespo.hal.science/hal-03567920/document
    Download Restriction: no

    File URL: https://libkey.io/10.1214/15-AOS1401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    2. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    3. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    4. Wei, Ying, 2008. "An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 397-409, March.
    5. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2016. "Vector Quantile Regression: An Optimal Transport Approach," SciencePo Working papers hal-03567920, HAL.
    2. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2014. "Vector quantile regression," CeMMAP working papers CWP48/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. repec:hal:spmain:info:hdl:2441/6rign1j2jd9c69im80po26g4nt is not listed on IDEAS
    4. repec:spo:wpmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
    5. repec:spo:wpmain:info:hdl:2441/6rign1j2jd9c69im80po26g4nt is not listed on IDEAS
    6. repec:hal:spmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
    7. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    8. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    9. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    10. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    11. Benjamin Williams, 2019. "Identification of a nonseparable model under endogeneity using binary proxies for unobserved heterogeneity," Quantitative Economics, Econometric Society, vol. 10(2), pages 527-563, May.
    12. Richard Blundell & Dennis Kristensen & Rosa Matzkin, 2017. "Individual counterfactuals with multidimensional unobserved heterogeneity," CeMMAP working papers 60/17, Institute for Fiscal Studies.
    13. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
    14. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    15. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    16. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    17. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    18. Davy Paindaveine & Miroslav Šiman, 2012. "Computing multiple-output regression quantile regions from projection quantiles," Computational Statistics, Springer, vol. 27(1), pages 29-49, March.
    19. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    20. Jane Cooley Fruehwirth & Salvador Navarro & Yuya Takahashi, 2016. "How the Timing of Grade Retention Affects Outcomes: Identification and Estimation of Time-Varying Treatment Effects," Journal of Labor Economics, University of Chicago Press, vol. 34(4), pages 979-1021.
    21. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    22. Montes-Rojas, Gabriel, 2017. "Reduced form vector directional quantiles," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 20-30.
    23. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    24. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03567920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.