IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v27y2018i3d10.1007_s10260-017-0407-x.html
   My bibliography  Save this article

On multivariate quantile regression analysis

Author

Listed:
  • Jean-Paul Chavas

    (University of Wisconsin)

Abstract

This paper investigates the estimation of parameters in a multivariate quantile regression model when the investigator wants to evaluate the associated distribution function. It proposes a new directional quantile estimator with the following properties: (1) it applies to an arbitrary number of random variables; (2) it is equivalent to estimating the distribution function allowing for non-convex distribution contours; (3) it satisfies nice equivariance properties; (4) it has desirable statistical properties (i.e., consistency and asymptotic normality); and (5) its implementation involves a modest computational burden: our proposed estimator can be obtained by solving parametric linear programming problems. As such, this paper expands the range of applications of quantile estimation for multivariate regression models.

Suggested Citation

  • Jean-Paul Chavas, 2018. "On multivariate quantile regression analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 365-384, August.
  • Handle: RePEc:spr:stmapp:v:27:y:2018:i:3:d:10.1007_s10260-017-0407-x
    DOI: 10.1007/s10260-017-0407-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-017-0407-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-017-0407-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Serfling, 2010. "Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 915-936.
    2. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    3. Wei, Ying, 2008. "An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 397-409, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    2. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    3. Linjie Wang & Jean‐Paul Chavas & Jian Li, 2024. "Dynamic linkages in agricultural and energy markets: A quantile impulse response approach," Agricultural Economics, International Association of Agricultural Economists, vol. 55(4), pages 639-676, July.
    4. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agarwal, Gaurav & Tu, Wei & Sun, Ying & Kong, Linglong, 2022. "Flexible quantile contour estimation for multivariate functional data: Beyond convexity," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2016. "Vector Quantile Regression: An Optimal Transport Approach," SciencePo Working papers hal-03567920, HAL.
    3. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
    4. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    5. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2014. "Vector quantile regression," CeMMAP working papers CWP48/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    7. repec:hal:spmain:info:hdl:2441/6rign1j2jd9c69im80po26g4nt is not listed on IDEAS
    8. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2015. "Vector quantile regression: an optimal transport approach," CeMMAP working papers 58/15, Institute for Fiscal Studies.
    9. Montes-Rojas, Gabriel, 2017. "Reduced form vector directional quantiles," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 20-30.
    10. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    11. Pavel Boček & Miroslav Šiman, 2017. "On weighted and locally polynomial directional quantile regression," Computational Statistics, Springer, vol. 32(3), pages 929-946, September.
    12. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Transmission of US and EU Economic Policy Uncertainty Shock to Asian Economies in Bad and Good Times," IZA Discussion Papers 13274, Institute of Labor Economics (IZA).
    13. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    14. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    15. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    16. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    17. Yves Dominicy & Pauliina Ilmonen & David Veredas, 2017. "Multivariate Hill Estimators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 108-142, April.
    18. Davy Paindaveine & Germain Van Bever, 2015. "Discussion of “Multivariate Functional Outlier Detection”, by Mia Hubert, Peter Rousseeuw and Pieter Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 223-231, July.
    19. Davy Paindaveine & Miroslav Šiman, 2012. "Computing multiple-output regression quantile regions from projection quantiles," Computational Statistics, Springer, vol. 27(1), pages 29-49, March.
    20. Liqun Yu & Nan Lin, 2017. "ADMM for Penalized Quantile Regression in Big Data," International Statistical Review, International Statistical Institute, vol. 85(3), pages 494-518, December.
    21. repec:spo:wpmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
    22. repec:spo:wpmain:info:hdl:2441/6rign1j2jd9c69im80po26g4nt is not listed on IDEAS
    23. He, Y. & Einmahl, J.H.J., 2014. "Estimation of Extreme Depth-Based Quantile Regions," Other publications TiSEM d6529c8a-8865-4c03-a064-a, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Multivariate; Quantile; Regression; Estimator; Nonconvex;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:27:y:2018:i:3:d:10.1007_s10260-017-0407-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.