IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v183y2021ics0047259x21000051.html
   My bibliography  Save this article

Reconstruction of atomic measures from their halfspace depth

Author

Listed:
  • Laketa, Petra
  • Nagy, Stanislav

Abstract

The halfspace depth can be seen as a mapping that to a finite Borel measure μ on the Euclidean space Rd assigns its depth, being a function Rd→[0,∞):x↦Dx;μ. The depth of μ quantifies how much centrally positioned a point x is with respect to μ. This function is intended to serve as generalization of the quantile function to multivariate spaces. We consider the problem of finding the inverse mapping to the halfspace depth: knowing only the function x↦Dx;μ, our objective is to reconstruct the measure μ. We focus on μ atomic with finitely many atoms, and present a simple method for the reconstruction of the position and the weights of all atoms of μ, from its depth only. As a consequence, (i) we recover generalizations of several related results known from the literature, with substantially simplified proofs, and (ii) design a novel reconstruction procedure that is numerically more stable, and considerably faster than the known algorithms. Our analysis presents a comprehensive treatment of the halfspace depth of those measures whose depths attain finitely many different values.

Suggested Citation

  • Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x21000051
    DOI: 10.1016/j.jmva.2021.104727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassairi, Abdelhamid & Regaieg, Ons, 2008. "On the Tukey depth of a continuous probability distribution," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2308-2313, October.
    2. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    3. Mizera, Ivan & Volauf, Milos, 2002. "Continuity of Halfspace Depth Contours and Maximum Depth Estimators: Diagnostics of Depth-Related Methods," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 365-388, November.
    4. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    5. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    6. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The Tukey and the random Tukey depths characterize discrete distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2304-2311, November.
    7. Koshevoy, Gleb A., 2002. "The Tukey Depth Characterizes the Atomic Measure," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 360-364, November.
    8. Kong, Linglong & Zuo, Yijun, 2010. "Smooth depth contours characterize the underlying distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2222-2226, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petra Laketa & Stanislav Nagy, 2022. "Halfspace depth for general measures: the ray basis theorem and its consequences," Statistical Papers, Springer, vol. 63(3), pages 849-883, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanislav Nagy, 2021. "Halfspace depth does not characterize probability distributions," Statistical Papers, Springer, vol. 62(3), pages 1135-1139, June.
    2. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    3. Wei, Bei & Lee, Stephen M.S., 2012. "Second-order accuracy of depth-based bootstrap confidence regions," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 112-123.
    4. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    5. repec:spo:wpmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    6. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    7. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    8. repec:spo:wpmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    9. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    10. Kong, Linglong & Zuo, Yijun, 2010. "Smooth depth contours characterize the underlying distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2222-2226, October.
    11. repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    12. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    13. Xiaohui Liu, 2017. "Fast implementation of the Tukey depth," Computational Statistics, Springer, vol. 32(4), pages 1395-1410, December.
    14. Petra Laketa & Stanislav Nagy, 2022. "Halfspace depth for general measures: the ray basis theorem and its consequences," Statistical Papers, Springer, vol. 63(3), pages 849-883, June.
    15. Alicia Nieto-Reyes & Rafael Duque & Giacomo Francisci, 2021. "A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    16. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    17. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    18. Hassairi, Abdelhamid & Regaieg, Ons, 2008. "On the Tukey depth of a continuous probability distribution," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2308-2313, October.
    19. Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
    20. Marc Hallin & Zudi Lu & Davy Paindaveine & Miroslav Siman, 2012. "Local Constant and Local Bilinear Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2012-003, ULB -- Universite Libre de Bruxelles.
    21. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
    22. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    23. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    24. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x21000051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.