IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-127979.html
   My bibliography  Save this paper

Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth

Author

Listed:
  • Marc Hallin
  • Davy Paindaveine
  • Miroslav Šiman

Abstract

A new multivariate concept of quantile, based on a directional version of Koenker and Bassett’s traditional regression quantiles, is introduced for multivariate location and multiple-output regression problems. In their empirical version, those quantiles can be computed efficiently via linear programming techniques. Consistency, Bahadur representation and asymptotic normality results are established. Most importantly, the contours generated by those quantiles are shown to coincide with the classical halfspace depth contours associated with the name of Tukey. This relation does not only allow for efficient depth contour computations by means of parametric linear programming, but also for transferring from the quantile to the depth universe such asymptotic results as Bahadur representations. Finally, linear programming duality opens the way to promising developments in depth-related multivariate rank-based inference.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Marc Hallin & Davy Paindaveine & Miroslav Šiman, 2010. "Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth," ULB Institutional Repository 2013/127979, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/127979
    Note: SCOPUS: ar.j
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/127979/3/AOS723.pdf
    File Function: Full text for the whole work, or for a work part
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    2. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    3. Abdous, B. & Theodorescu, R., 1992. "Note on the spatial quantile of a random vector," Statistics & Probability Letters, Elsevier, vol. 13(4), pages 333-336, March.
    4. Biman Chakraborty, 2001. "On Affine Equivariant Multivariate Quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 380-403, June.
    5. Cascos, Ignacio & López-Díaz, Miguel, 2005. "Integral trimmed regions," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 404-424, October.
    6. Robert Serfling, 2010. "Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 915-936.
    7. Willa W. Chen & Rohit S. Deo, 2004. "Power transformations to induce normality and their applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 117-130, February.
    8. Breckling, Jens & Kokic, Philip & Lübke, Oliver, 2001. "A note on multivariate M-quantiles," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 39-44, November.
    9. Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Wei, Ying, 2008. "An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 397-409, March.
    12. Komei Fukuda & Vera Rosta, 2005. "Data Depth and Maximum Feasible Subsystems," Springer Books, in: David Avis & Alain Hertz & Odile Marcotte (ed.), Graph Theory and Combinatorial Optimization, chapter 0, pages 37-67, Springer.
    13. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
    2. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    3. Pavel Boček & Miroslav Šiman, 2017. "On weighted and locally polynomial directional quantile regression," Computational Statistics, Springer, vol. 32(3), pages 929-946, September.
    4. Marc Hallin & Miroslav Šiman, 2016. "Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2016-03, ULB -- Universite Libre de Bruxelles.
    5. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Transmission of US and EU Economic Policy Uncertainty Shock to Asian Economies in Bad and Good Times," IZA Discussion Papers 13274, Institute of Labor Economics (IZA).
    6. Agarwal, Gaurav & Tu, Wei & Sun, Ying & Kong, Linglong, 2022. "Flexible quantile contour estimation for multivariate functional data: Beyond convexity," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    7. Daniel Hlubinka & Lukáš Kotík & Miroslav Šiman, 2022. "Multivariate quantiles with both overall and directional probability interpretation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1586-1604, December.
    8. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    9. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
    10. Mohamed CHAOUCH & Ali GANNOUN & Jérôme SARACCO, 2008. "Conditional Spatial Quantile: Characterization and Nonparametric Estimation," Cahiers du GREThA (2007-2019) 2008-10, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    11. Nadja Klein & Thomas Kneib, 2020. "Directional bivariate quantiles: a robust approach based on the cumulative distribution function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 225-260, June.
    12. Davy Paindaveine & Miroslav Šiman, 2012. "Computing multiple-output regression quantile regions from projection quantiles," Computational Statistics, Springer, vol. 27(1), pages 29-49, March.
    13. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    14. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    15. Abdelaati Daouia & Gilles Stupfler, 2024. "Extremile Regression," Post-Print hal-04697061, HAL.
    16. Chaouch, Mohamed & Goga, Camelia, 2010. "Design-based estimation for geometric quantiles with application to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2214-2229, October.
    17. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    18. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    19. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    20. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/127979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.