IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v24y2015i2p249-264.html
   My bibliography  Save this article

On generalized elliptical quantiles in the nonlinear quantile regression setup

Author

Listed:
  • Daniel Hlubinka
  • Miroslav Šiman

Abstract

Inspired by nonlinear quantile regression, the article introduces, investigates, discusses, and illustrates a new concept of generalized elliptical location quantiles. They may require less stringent moment assumptions, be less sensitive to outliers, be less rigid, employ more a priori information regarding the location of the distribution, and have higher potential for various regression generalizations than their common elliptical predecessor defined in the convex optimization framework by means of standard linear quantile regression. Furthermore, they still include an equivalent of their predecessor as a special case and inherit most of its favorable features such as the probability interpretation, natural equivariance properties, and good behavior for elliptical and symmetric distributions, which is demonstrated both by theoretical results and data examples with convincing graphical output. On the other hand, the new elliptical quantiles need not always be uniquely defined and they require somewhat different approach to their analysis and computation due to their intrinsically non-convex formulation. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Daniel Hlubinka & Miroslav Šiman, 2015. "On generalized elliptical quantiles in the nonlinear quantile regression setup," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 249-264, June.
  • Handle: RePEc:spr:testjl:v:24:y:2015:i:2:p:249-264
    DOI: 10.1007/s11749-014-0405-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0405-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-014-0405-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    2. Ella Roelant & Stefan Aelst & Gert Willems, 2009. "The minimum weighted covariance determinant estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(2), pages 177-204, September.
    3. Ella Roelant & Stefan Van Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    4. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    5. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    7. Marc Hallin & Miroslav Šiman, 2016. "Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2016-03, ULB -- Universite Libre de Bruxelles.
    8. Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.
    9. Ella Roelant & Stefan Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    10. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    11. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    12. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hallin, Marc & Šiman, Miroslav, 2016. "Elliptical multiple-output quantile regression and convex optimization," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 232-237.
    2. Marc Hallin & Miroslav Šiman, 2016. "Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2016-03, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    2. Pavel Boček & Miroslav Šiman, 2017. "On weighted and locally polynomial directional quantile regression," Computational Statistics, Springer, vol. 32(3), pages 929-946, September.
    3. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    4. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    6. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    7. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    8. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
    9. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    10. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    11. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
    12. Isabelle Charlier & Davy Paindaveine & Jérôme Saracco, 2016. "Multiple-Output Quantile Regression through Optimal Quantization," Working Papers ECARES ECARES 2016-18, ULB -- Universite Libre de Bruxelles.
    13. Marc Hallin & Miroslav Šiman, 2016. "Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2016-03, ULB -- Universite Libre de Bruxelles.
    14. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Transmission of US and EU Economic Policy Uncertainty Shock to Asian Economies in Bad and Good Times," IZA Discussion Papers 13274, Institute of Labor Economics (IZA).
    15. Daniel Hlubinka & Lukáš Kotík & Miroslav Šiman, 2022. "Multivariate quantiles with both overall and directional probability interpretation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1586-1604, December.
    16. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2016. "Multivariate Method Of Simulated Quantiles," Departmental Working Papers of Economics - University 'Roma Tre' 0212, Department of Economics - University Roma Tre.
    17. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    18. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    19. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.
    20. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:2:p:249-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.