IDEAS home Printed from https://ideas.repec.org/r/spr/climat/v119y2013i2p345-357.html
   My bibliography  Save this item

Changes in temperature and precipitation extremes in the CMIP5 ensemble

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luminda Niroshana Gunawardhana & Ghazi A. Al-Rawas & Ghadeer Al-Hadhrami, 2018. "Quantification of the changes in intensity and frequency of hourly extreme rainfall attributed climate change in Oman," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1649-1664, July.
  2. Meng Zhang & Haipeng Yu & Andrew D. King & Yun Wei & Jianping Huang & Yu Ren, 2020. "Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia," Climatic Change, Springer, vol. 162(2), pages 603-619, September.
  3. Neha Mittal & Ashok Mishra & Rajendra Singh & Pankaj Kumar, 2014. "Assessing future changes in seasonal climatic extremes in the Ganges river basin using an ensemble of regional climate models," Climatic Change, Springer, vol. 123(2), pages 273-286, March.
  4. Miranda J. Fix & Daniel Cooley & Stephan R. Sain & Claudia Tebaldi, 2018. "A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling," Climatic Change, Springer, vol. 146(3), pages 335-347, February.
  5. Yangyang Xu & Jean-François Lamarque & Benjamin M. Sanderson, 2018. "The importance of aerosol scenarios in projections of future heat extremes," Climatic Change, Springer, vol. 146(3), pages 393-406, February.
  6. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
  7. Sonia Benito & Carmen López-Martín & Mª Ángeles Navarro, 2023. "Assessing the importance of the choice threshold in quantifying market risk under the POT approach (EVT)," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-31, March.
  8. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
  9. Jeanne Thibeault & Anji Seth, 2014. "Changing climate extremes in the Northeast United States: observations and projections from CMIP5," Climatic Change, Springer, vol. 127(2), pages 273-287, November.
  10. Dominik Traxl & Niklas Boers & Aljoscha Rheinwalt & Bodo Bookhagen, 2021. "The role of cyclonic activity in tropical temperature-rainfall scaling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  11. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
  12. Jorge Castillo-Mateo & Jesús Asín & Ana C. Cebrián & Jesús Mateo-Lázaro & Jesús Abaurrea, 2023. "Bayesian Variable Selection in Generalized Extreme Value Regression: Modeling Annual Maximum Temperature," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
  13. Resende, Nicole Costa & Miranda, Jarbas Honório & Cooke, Richard & Chu, Maria L. & Chou, Sin Chan, 2019. "Impacts of regional climate change on the runoff and root water uptake in corn crops in Parana, Brazil," Agricultural Water Management, Elsevier, vol. 221(C), pages 556-565.
  14. Wei Zhang & Gabriele Villarini & Michael Wehner, 2019. "Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures," Climatic Change, Springer, vol. 154(1), pages 257-271, May.
  15. Peter A. Stott & David J. Karoly & Francis W. Zwiers, 2017. "Is the choice of statistical paradigm critical in extreme event attribution studies?," Climatic Change, Springer, vol. 144(2), pages 143-150, September.
  16. Yong Yuan & Denghua Yan & Zhe Yuan & Jun Yin & Zhongnan Zhao, 2019. "Spatial Distribution of Precipitation in Huang-Huai-Hai River Basin between 1961 to 2016, China," IJERPH, MDPI, vol. 16(18), pages 1-11, September.
  17. Stephen R. Sobie, 2020. "Future changes in precipitation-caused landslide frequency in British Columbia," Climatic Change, Springer, vol. 162(2), pages 465-484, September.
  18. Rajesh R. Shrestha & Alex J. Cannon & Markus A. Schnorbus & Francis W. Zwiers, 2017. "Projecting future nonstationary extreme streamflow for the Fraser River, Canada," Climatic Change, Springer, vol. 145(3), pages 289-303, December.
  19. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
  20. Haoyang Du & Chen Zhou & Haoqing Tang & Xiaolong Jin & Dengshuai Chen & Penghui Jiang & Manchun Li, 2021. "Simulation and estimation of future precipitation changes in arid regions: a case study of Xinjiang, Northwest China," Climatic Change, Springer, vol. 167(3), pages 1-21, August.
  21. Roshan Srivastav & Andre Schardong & Slobodan Simonovic, 2014. "Equidistance Quantile Matching Method for Updating IDFCurves under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2539-2562, July.
  22. Conrad Wasko & Rory Nathan, 2019. "The local dependency of precipitation on historical changes in temperature," Climatic Change, Springer, vol. 156(1), pages 105-120, September.
  23. Soledad Collazo & Mariana Barrucand & Matilde Rusticucci, 2022. "Evaluation of CMIP6 models in the representation of observed extreme temperature indices trends in South America," Climatic Change, Springer, vol. 172(1), pages 1-21, May.
  24. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  25. Victor Ongoma & Haishan Chen & Chujie Gao & Aston Matwai Nyongesa & Francis Polong, 2018. "Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 901-920, January.
  26. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
  27. Gareth J. Marshall & Kirsti Jylhä & Sonja Kivinen & Mikko Laapas & Anita Verpe Dyrrdal, 2020. "The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia," Climatic Change, Springer, vol. 162(2), pages 741-759, September.
  28. Hefei Huang & Huijuan Cui & Quansheng Ge, 2021. "Assessment of potential risks induced by increasing extreme precipitation under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2059-2079, September.
  29. Giovanni Forzieri & Luc Feyen & Simone Russo & Michalis Vousdoukas & Lorenzo Alfieri & Stephen Outten & Mirco Migliavacca & Alessandra Bianchi & Rodrigo Rojas & Alba Cid, 2016. "Multi-hazard assessment in Europe under climate change," Climatic Change, Springer, vol. 137(1), pages 105-119, July.
  30. Bernard Twaróg, 2024. "Assessing Polarisation of Climate Phenomena Based on Long-Term Precipitation and Temperature Sequences," Sustainability, MDPI, vol. 16(19), pages 1-31, September.
  31. Claudia Tebaldi & Michael F. Wehner, 2018. "Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5," Climatic Change, Springer, vol. 146(3), pages 349-361, February.
  32. Bryan Jones & Claudia Tebaldi & Brian C. O’Neill & Keith Oleson & Jing Gao, 2018. "Avoiding population exposure to heat-related extremes: demographic change vs climate change," Climatic Change, Springer, vol. 146(3), pages 423-437, February.
  33. Xiang Gao & C. Adam Schlosser & Eric R. Morgan, 2018. "Potential impacts of climate warming and increased summer heat stress on the electric grid: a case study for a large power transformer (LPT) in the Northeast United States," Climatic Change, Springer, vol. 147(1), pages 107-118, March.
  34. Yves Tramblay & Samuel Somot, 2018. "Future evolution of extreme precipitation in the Mediterranean," Climatic Change, Springer, vol. 151(2), pages 289-302, November.
  35. John O'Sullivan & Conor Sweeney & Andrew C. Parnell, 2020. "Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
  36. Jang Hyun Sung & Minsung Kwon & Jong-June Jeon & Seung Beom Seo, 2019. "A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
  37. Ryota Arai & Masashi Kiguchi & Michio Murakami, 2020. "A Quantitative Estimation of the Effects of Measures to Counter Climate Change on Well-Being: Focus on Non-Use of Air Conditioners as a Mitigation Measure in Japan," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
  38. Pinya Wang & Yang Yang & Daokai Xue & Lili Ren & Jianping Tang & L. Ruby Leung & Hong Liao, 2023. "Aerosols overtake greenhouse gases causing a warmer climate and more weather extremes toward carbon neutrality," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  39. Sarosh Alam Ghausi & Erwin Zehe & Subimal Ghosh & Yinglin Tian & Axel Kleidon, 2024. "Thermodynamically inconsistent extreme precipitation sensitivities across continents driven by cloud-radiative effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  40. Zhiwei Yong & Junnan Xiong & Zegen Wang & Weiming Cheng & Jiawei Yang & Quan Pang, 2021. "Relationship of extreme precipitation, surface air temperature, and dew point temperature across the Tibetan Plateau," Climatic Change, Springer, vol. 165(1), pages 1-22, March.
  41. Ghaith Falah Ziarh & Jin Hyuck Kim & Seung Taek Chae & Hae-Yeol Kang & Changyu Hong & Jae Yeol Song & Eun-Sung Chung, 2024. "Identifying the Contributing Sources of Uncertainties in Urban Flood Vulnerability in South Korea Considering Multiple GCMs, SSPs, Weight Determination Methods, and MCDM Techniques," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
  42. M. N. Lorenzo & I. Alvarez, 2022. "Future changes of hot extremes in Spain: towards warmer conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 383-402, August.
  43. Isabel Hovdahl, 2020. "Deadly Variation: The Effect of Temperature Variability on Mortality," Working Papers No 01/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  44. Muhammad Ahtasham Mushtaq & Hafiz Ghulam Muhu-Din Ahmed & Yawen Zeng, 2024. "Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security," Sustainability, MDPI, vol. 16(13), pages 1-24, July.
  45. Wenhui Liu & Jidong Wu & Rumei Tang & Mengqi Ye & Jing Yang, 2020. "Daily Precipitation Threshold for Rainstorm and Flood Disaster in the Mainland of China: An Economic Loss Perspective," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
  46. Bacon, Christopher M. & Sundstrom, William A. & Stewart, Iris T. & Beezer, David, 2017. "Vulnerability to Cumulative Hazards: Coping with the Coffee Leaf Rust Outbreak, Drought, and Food Insecurity in Nicaragua," World Development, Elsevier, vol. 93(C), pages 136-152.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.