IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v135y2016i3d10.1007_s10584-015-1576-y.html
   My bibliography  Save this article

Extreme hot summers in China in the CMIP5 climate models

Author

Listed:
  • Guoyong Leng

    (Chinese Academy of Sciences
    Pacific Northwest National Laboratory)

  • Qiuhong Tang

    (Chinese Academy of Sciences)

  • Shengzhi Huang

    (Xi’an University of Technology)

  • Xuejun Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Given the severe impacts of hot summers on human and natural systems, we attempt to quantify future changes in extreme hot summer frequency in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) projections. Unlike previous studies focusing on fixed future time slices, we investigate the changes as a function of global mean temperature (GMT) rise. Analyses show that extreme hot summers (June-July-August mean temperature higher than 90 % quantile of 1971–2000 climatology) are projected to occur at least 80 % of the time across China with a GMT rise of 2 °C. The fraction of land area with extreme hot summers becoming the norm (median of future summer temperatures exceed the extreme) will increase from ~15 % with 0.5 °C of GMT rise to ~97 % with 2.5 °C GMT rise, which is much greater than for the global land surface as a whole. A distinct spatial pattern of the GMT rise threshold over which the local extreme hot summer first becomes the norm is revealed. When averaged over the country, the GMT rise threshold is 0.96 °C. Earth system models exhibit comparable results to climate system models, but with a relatively larger spread. Further analysis shows that the concurrence of hot and dry summers will increase significantly with the spatial structure of responses depending on the definition of drying. The increase of concurrent hot and dry conditions will induce potential droughts which would be more severe than those induced by only precipitation deficits.

Suggested Citation

  • Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
  • Handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1576-y
    DOI: 10.1007/s10584-015-1576-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-015-1576-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-015-1576-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    2. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    3. Noah Diffenbaugh & Martin Scherer, 2011. "Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries," Climatic Change, Springer, vol. 107(3), pages 615-624, August.
    4. Bruce Anderson, 2012. "Intensification of seasonal extremes given a 2°C global warming target," Climatic Change, Springer, vol. 112(2), pages 325-337, May.
    5. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    6. Ying Sun & Xuebin Zhang & Francis W. Zwiers & Lianchun Song & Hui Wan & Ting Hu & Hong Yin & Guoyu Ren, 2014. "Rapid increase in the risk of extreme summer heat in Eastern China," Nature Climate Change, Nature, vol. 4(12), pages 1082-1085, December.
    7. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    8. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    9. Nikolaos Christidis & Gareth S. Jones & Peter A. Stott, 2015. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave," Nature Climate Change, Nature, vol. 5(1), pages 46-50, January.
    10. P. Duffy & C. Tebaldi, 2012. "Increasing prevalence of extreme summer temperatures in the U.S," Climatic Change, Springer, vol. 111(2), pages 487-495, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    2. Mohd Danish Khan & Hong Ha Thi Vu & Quang Tuan Lai & Ji Whan Ahn, 2019. "Aggravation of Human Diseases and Climate Change Nexus," IJERPH, MDPI, vol. 16(15), pages 1-26, August.
    3. Vittal Hari & Subimal Ghosh & Wei Zhang & Rohini Kumar, 2022. "Strong influence of north Pacific Ocean variability on Indian summer heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jeanne Thibeault & Anji Seth, 2014. "Changing climate extremes in the Northeast United States: observations and projections from CMIP5," Climatic Change, Springer, vol. 127(2), pages 273-287, November.
    5. Giovanni Forzieri & Luc Feyen & Simone Russo & Michalis Vousdoukas & Lorenzo Alfieri & Stephen Outten & Mirco Migliavacca & Alessandra Bianchi & Rodrigo Rojas & Alba Cid, 2016. "Multi-hazard assessment in Europe under climate change," Climatic Change, Springer, vol. 137(1), pages 105-119, July.
    6. Bryan Jones & Claudia Tebaldi & Brian C. O’Neill & Keith Oleson & Jing Gao, 2018. "Avoiding population exposure to heat-related extremes: demographic change vs climate change," Climatic Change, Springer, vol. 146(3), pages 423-437, February.
    7. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.
    8. Ali Ahmadalipour & Hamid Moradkhani & Mukesh Kumar, 2019. "Mortality risk from heat stress expected to hit poorest nations the hardest," Climatic Change, Springer, vol. 152(3), pages 569-579, March.
    9. Bruce Anderson, 2011. "Near-term increase in frequency of seasonal temperature extremes prior to the 2°C global warming target," Climatic Change, Springer, vol. 108(3), pages 581-589, October.
    10. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    11. A. Marsha & S. R. Sain & M. J. Heaton & A. J. Monaghan & O.V. Wilhelmi, 2018. "Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA," Climatic Change, Springer, vol. 146(3), pages 471-485, February.
    12. M. N. Lorenzo & I. Alvarez, 2022. "Future changes of hot extremes in Spain: towards warmer conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 383-402, August.
    13. Pin Wang & Tangao Hu & Feng Kong & Dengrong Zhang, 2019. "Changes in the spatial pattern of rice exposure to heat stress in China over recent decades," Climatic Change, Springer, vol. 154(1), pages 229-240, May.
    14. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    15. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    16. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    17. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    18. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    19. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    20. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1576-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.