IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4418-d364312.html
   My bibliography  Save this article

CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China

Author

Listed:
  • Hong Ying

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

  • Hongyan Zhang

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

  • Ying Sun

    (Jilin Provincial Center of Land and Resource Information, Department of Natural Resources of Jilin Province, Changchun 130024, China)

  • Jianjun Zhao

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

  • Zhengxiang Zhang

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

  • Xiaoyi Guo

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

  • Hang Zhao

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

  • Rihan Wu

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

  • Guorong Deng

    (Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

Abstract

The increasing number of extreme climate events is having a great impact on the terrestrial ecosystem. In this study, we applied a Taylor diagram to evaluate the 7 extreme temperature indices (ETI) of 12 models and the multi-model ensemble (MME) mean from phase 5 of the Coupled Model Intercomparison Project (CMIP5) during 1961–2005, and found that the MME has the best simulation effect. Warm indices and warm duration indices increase slowly, rapidly, and extremely under the representative concentration pathway 2.6 (RCP2.6), RCP4.5, and RCP8.5 scenarios, respectively. In contrast, the decrease in cold indices and cold duration indices are slow, rapid and extreme, respectively. The ETI from 2021–2100 under the RCP2.6 and RCP4.5 scenarios have primary periods ranging from 1–16 years. Under the RCP2.6 and RCP4.5 scenarios, the changes of warm indices are relatively largest in the basin of the central, and southeastern, while, under the RCP8.5 scenario, the changes are relatively significant, except for basin of northeast. The cold indices have the most significant decreasing trend in the Tibetan Plateau and its surrounding areas, under the three RCP scenarios. The findings from this study can provide reference for the risk management and prevention of climate disasters in the context of climate change in mainland China.

Suggested Citation

  • Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4418-:d:364312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    2. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    3. Boris Orlowsky & Sonia Seneviratne, 2012. "Global changes in extreme events: regional and seasonal dimension," Climatic Change, Springer, vol. 110(3), pages 669-696, February.
    4. Zhihong Jiang & Jie Song & Laurent Li & Weilin Chen & Zhifu Wang & Ji Wang, 2012. "Extreme climate events in China: IPCC-AR4 model evaluation and projection," Climatic Change, Springer, vol. 110(1), pages 385-401, January.
    5. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    6. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    7. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubravka Milić & Snežana Radenković & Dimitrije Radišić & Andrijana Andrić & Tijana Nikolić & Ante Vujić, 2019. "Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    2. Meng Zhang & Haipeng Yu & Andrew D. King & Yun Wei & Jianping Huang & Yu Ren, 2020. "Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia," Climatic Change, Springer, vol. 162(2), pages 603-619, September.
    3. Xinyan Mao & Xinyu Guo & Yucheng Wang & Katsumi Takayama, 2019. "Influences of Global Warming on the Larval Survival and Transport of Snow Crab ( Chionoecetes opilio ) in the Sea of Japan," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    4. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    5. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    6. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    7. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    8. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    9. Guillaume Bal & Etienne Rivot & Jean-Luc Baglinière & Jonathan White & Etienne Prévost, 2014. "A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    10. Fuentes, M.M.P.B. & Porter, W.P., 2013. "Using a microclimate model to evaluate impacts of climate change on sea turtles," Ecological Modelling, Elsevier, vol. 251(C), pages 150-157.
    11. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    12. Dan Song & Tangbin Huo & Zhao Zhang & Lei Cheng & Le Wang & Kun Ming & Hui Liu & Mengsha Li & Xue Du, 2022. "Metagenomic Analysis Reveals the Response of Microbial Communities and Their Functions in Lake Sediment to Environmental Factors," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    13. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    14. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    15. Claudia Tebaldi & Michael F. Wehner, 2018. "Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5," Climatic Change, Springer, vol. 146(3), pages 349-361, February.
    16. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    17. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    18. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    19. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    20. Iwona Gottfried & Tomasz Gottfried & Grzegorz Lesiński & Grzegorz Hebda & Maurycy Ignaczak & Grzegorz Wojtaszyn & Mirosław Jurczyszyn & Maciej Fuszara & Elżbieta Fuszara & Witold Grzywiński & Grzegorz, 2020. "Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change – Are current monitoring schemes still reliable for cryophilic bat species?," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4418-:d:364312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.