IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v137y2016i1d10.1007_s10584-016-1661-x.html
   My bibliography  Save this article

Multi-hazard assessment in Europe under climate change

Author

Listed:
  • Giovanni Forzieri

    (European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit)

  • Luc Feyen

    (European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit)

  • Simone Russo

    (European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Econometrics and Applied Statistics Unit)

  • Michalis Vousdoukas

    (European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit
    University of the Aegean, University hill)

  • Lorenzo Alfieri

    (European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit)

  • Stephen Outten

    (Nansen Environmental and Remote Sensing Center)

  • Mirco Migliavacca

    (Max Planck Institute for Biogeochemistry)

  • Alessandra Bianchi

    (European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit)

  • Rodrigo Rojas

    (CSIRO, Land and Water)

  • Alba Cid

    (Universidad de Cantabria)

Abstract

While reported losses of climate-related hazards are at historically high levels, climate change is likely to enhance the risk posed by extreme weather events. Several regions are likely to be exposed to multiple climate hazards, yet their modeling in a joint scheme is still at the early stages. A multi-hazard framework to map exposure to multiple climate extremes in Europe along the twenty-first century is hereby presented. Using an ensemble of climate projections, changes in the frequency of heat and cold waves, river and coastal flooding, streamflow droughts, wildfires and windstorms are evaluated. Corresponding variations in expected annual exposure allow for a quantitative comparison of hazards described by different process characteristics and metrics. Projected changes in exposure depict important variations in hazard scenarios, especially those linked to rising temperatures, and spatial patterns largely modulated by local climate conditions. Results show that Europe will likely face a progressive increase in overall climate hazard with a prominent spatial gradient towards south-western regions mainly driven by the rise of heat waves, droughts and wildfires. Key hotspots emerge particularly along coastlines and in floodplains, often highly populated and economically pivotal, where floods and windstorms could be critical in combination with other climate hazards. Projected increases in exposure will be larger for very extreme events due to their pronounced changes in frequency. Results of this appraisal provide useful input for forthcoming European disaster risk and adaptation policy.

Suggested Citation

  • Giovanni Forzieri & Luc Feyen & Simone Russo & Michalis Vousdoukas & Lorenzo Alfieri & Stephen Outten & Mirco Migliavacca & Alessandra Bianchi & Rodrigo Rojas & Alba Cid, 2016. "Multi-hazard assessment in Europe under climate change," Climatic Change, Springer, vol. 137(1), pages 105-119, July.
  • Handle: RePEc:spr:climat:v:137:y:2016:i:1:d:10.1007_s10584-016-1661-x
    DOI: 10.1007/s10584-016-1661-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1661-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1661-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. M. Fischer & U. Beyerle & R. Knutti, 2013. "Robust spatially aggregated projections of climate extremes," Nature Climate Change, Nature, vol. 3(12), pages 1033-1038, December.
    2. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    3. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    4. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    5. Nikolaos Christidis & Gareth S. Jones & Peter A. Stott, 2015. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave," Nature Climate Change, Nature, vol. 5(1), pages 46-50, January.
    6. Jochen Hinkel & Robert Nicholls & Athanasios Vafeidis & Richard Tol & Thaleia Avagianou, 2010. "Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 703-719, October.
    7. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Attila Buzási & Tamás Pálvölgyi & Diána Esses, 2021. "Drought-related vulnerability and its policy implications in Hungary," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(3), pages 1-20, March.
    2. Bo Ai & Yuxin Tian & Peipei Wang & Yuliang Gan & Fang Luo & Qingtong Shi, 2022. "Vulnerability Analysis of Coastal Zone Based on InVEST Model in Jiaozhou Bay, China," Sustainability, MDPI, vol. 14(11), pages 1-19, June.
    3. Viktória Blanka & Zsuzsanna Ladányi & Péter Szilassi & György Sipos & Attila Rácz & József Szatmári, 2017. "Public Perception on Hydro-Climatic Extremes and Water Management Related to Environmental Exposure, SE Hungary," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1619-1634, March.
    4. Gabrielle Linscott & Andrea Rishworth & Brian King & Mikael P. Hiestand, 2022. "Uneven experiences of urban flooding: examining the 2010 Nashville flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 629-653, January.
    5. Maria Fabrizia Clemente & Valeria D’Ambrosio & Ferdinando Di Martino & Vittorio Miraglia, 2023. "Quantify the Contribution of Nature-Based Solutions in Reducing the Impacts of Hydro-Meteorological Hazards in the Urban Environment: A Case Study in Naples, Italy," Land, MDPI, vol. 12(3), pages 1-20, February.
    6. Andreas Eleftheriou & Petros Mouzourides & George Biskos & Panayiotis Yiallouros & Prashant Kumar & Marina K.-A. Neophytou, 2023. "The challenge of adopting mitigation and adaptation measures for the impacts of sand and dust storms in Eastern Mediterranean Region: a critical review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-36, August.
    7. Meng Meng & Marcin Dabrowski & Dominic Stead, 2020. "Enhancing Flood Resilience and Climate Adaptation: The State of the Art and New Directions for Spatial Planning," Sustainability, MDPI, vol. 12(19), pages 1-23, September.
    8. Alexander S. Little & Matthew D. K. Priestley & Jennifer L. Catto, 2023. "Future increased risk from extratropical windstorms in northern Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Katarzyna Wartalska & Martyna Grzegorzek & Maciej Bełcik & Marcin Wdowikowski & Agnieszka Kolanek & Elżbieta Niemierka & Piotr Jadwiszczak & Bartosz Kaźmierczak, 2024. "The Potential of RainWater Harvesting Systems in Europe – Current State of Art and Future Perspectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4657-4683, September.
    10. George Halkos & Antonis Skouloudis & Chrisovaladis Malesios & Konstantinos Evangelinos, 2018. "Bouncing Back from Extreme Weather Events: Some Preliminary Findings on Resilience Barriers Facing Small and Medium‐Sized Enterprises," Business Strategy and the Environment, Wiley Blackwell, vol. 27(4), pages 547-559, May.
    11. Chen, Xinguo & Li, Yi & Yao, Ning & Liu, De Li & Javed, Tehseen & Liu, Chuncheng & Liu, Fenggui, 2020. "Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields," Agricultural Systems, Elsevier, vol. 185(C).
    12. Meilutytė-Lukauskienė D. & Akstinas V. & Vaitulionytė M. & Tomkevičienė A., 2022. "Behaviour of the 2010 flood in Lithuania: management and socio-economic risks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-29, March.
    13. Juan Francisco Casero-Cepeda & Dani Catalá-Pérez & Antonio Cano-Orellana, 2022. "Design and Application of a Citizen Participation Tool to Improve Public Management of Drought Situations," Land, MDPI, vol. 11(10), pages 1-11, October.
    14. Jiqing Lin & Wufa Yang & Kunyong Yu & Jianwei Geng & Jian Liu, 2023. "Construction of Water Corridors for Mitigation of Urban Heat Island Effect," Land, MDPI, vol. 12(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    2. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    3. Mohammad Ridwan Lessy & Jonatan Lassa & Kerstin K. Zander, 2024. "Understanding Multi-Hazard Interactions and Impacts on Small-Island Communities: Insights from the Active Volcano Island of Ternate, Indonesia," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    4. Alessandro D’Amico & Martina Russo & Marco Angelosanti & Gabriele Bernardini & Donatella Vicari & Enrico Quagliarini & Edoardo Currà, 2021. "Built Environment Typologies Prone to Risk: A Cluster Analysis of Open Spaces in Italian Cities," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    5. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
    6. Yang Zhou & Yansui Liu & Wenxiang Wu & Ning Li, 2015. "Integrated risk assessment of multi-hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 257-280, August.
    7. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    8. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    9. Valentina Gallina & Silvia Torresan & Alex Zabeo & Andrea Critto & Thomas Glade & Antonio Marcomini, 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones," Sustainability, MDPI, vol. 12(9), pages 1-28, May.
    10. Changhong Zhou & Mu Chen & Jiangtao Chen & Yu Chen & Wenwu Chen, 2024. "A Multi-Hazard Risk Assessment Model for a Road Network Based on Neural Networks and Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    11. Gustavo Barrantes, 2018. "Multi-hazard model for developing countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1081-1095, June.
    12. Pilar Baquedano Julià & Tiago Miguel Ferreira, 2021. "From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 93-128, August.
    13. Ran Wang & Laiyin Zhu & Han Yu & Shujuan Cui & Jing’ai Wang, 2016. "Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC)," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    14. Wei Xu & Xiaodong Ming & Yunjia Ma & Xinhang Zhang & Peijun Shi & Li Zhuo & Bingqiang Lu, 2019. "Quantitative Multi-Hazard Risk Assessment of Crop Loss in the Yangtze River Delta Region of China," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    15. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    16. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    17. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    18. Chaofeng Shao & Juan Yang & Xiaogang Tian & Meiting Ju & Lei Huang, 2013. "Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks," IJERPH, MDPI, vol. 10(4), pages 1-22, April.
    19. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    20. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:137:y:2016:i:1:d:10.1007_s10584-016-1661-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.