My bibliography
Save this item
Covariance matrix selection and estimation via penalised normal likelihood
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cao, Xuan & Khare, Kshitij & Ghosh, Malay, 2020. "Consistent Bayesian sparsity selection for high-dimensional Gaussian DAG models with multiplicative and beta-mixture priors," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- Villers Fanny & Schaeffer Brigitte & Bertin Caroline & Huet Sylvie, 2008. "Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-37, September.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2019.
"Exponent of Cross-sectional Dependence for Residuals,"
Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 46-102, September.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2018. "Exponent of Cross-sectional Dependence for Residuals," CESifo Working Paper Series 7223, CESifo.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2018. "Exponent of cross-sectional dependence for residuals," Monash Econometrics and Business Statistics Working Papers 13/18, Monash University, Department of Econometrics and Business Statistics.
- Yumou Qiu & Song Xi Chen, 2015.
"Bandwidth Selection for High-Dimensional Covariance Matrix Estimation,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1160-1174, September.
- Qiu, Yumou & Chen, Song Xi, 2014. "Band Width Selection for High Dimensional Covariance Matrix Estimation," MPRA Paper 59641, University Library of Munich, Germany.
- Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
- Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
- Gao, Zhenguo & Wang, Xinye & Kang, Xiaoning, 2023. "Ensemble LDA via the modified Cholesky decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
- Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Marcin Hitczenko, 2013. "Modeling anchoring effects in sequential Likert scale questions," Working Papers 13-15, Federal Reserve Bank of Boston.
- Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
- Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
- M Hashem Pesaran & Takashi Yamagata, 2024. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
- M Hashem Pesaran & Takashi Yamagata, 2024.
"Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
- M. Hashem Pesaran & Takashi Yamagata, 2017. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Discussion Papers 17/04, Department of Economics, University of York.
- M. Hashem Pesaran & Takashi Yamagata, 2017. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," CESifo Working Paper Series 6432, CESifo.
- Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
- Xingqi Du & Subhashis Ghosal, 2018. "Bayesian Discriminant Analysis Using a High Dimensional Predictor," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 112-145, December.
- Paolo Giordani & Xiuyan Mun & Robert Kohn, 2012. "Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 154-192, December.
- Pesonen, Maiju & Pesonen, Henri & Nevalainen, Jaakko, 2015. "Covariance matrix estimation for left-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 13-25.
- Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
- Chen, Song Xi & Li, Jun & Zhong, Pingshou, 2014. "Two-Sample Tests for High Dimensional Means with Thresholding and Data Transformation," MPRA Paper 59815, University Library of Munich, Germany.
- Xiaoping Zhou & Dmitry Malioutov & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Smooth monotone covariance for elliptical distributions and applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1555-1571, September.
- Benjamin Poignard & Manabu Asai, 2023.
"Estimation of high-dimensional vector autoregression via sparse precision matrix,"
The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
- Benjamin Poignard & Manabu Asai, 2021. "Estimation of High Dimensional Vector Autoregression via Sparse Precision Matrix," Discussion Papers in Economics and Business 21-03, Osaka University, Graduate School of Economics.
- Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
- Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
- Pesaran, M. Hashem & Yamagata, Takashi, 2012.
"Testing CAPM with a Large Number of Assets,"
IZA Discussion Papers
6469, Institute of Labor Economics (IZA).
- M Hashem Pesaran & Takashi Yamagata, 2012. "Testing CAPM with a Large Number of Assets," Discussion Papers 12/05, Department of Economics, University of York.
- Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Tze Leung Lai & Haipeng Xing & Zehao Chen, 2011. "Mean--variance portfolio optimization when means and covariances are unknown," Papers 1108.0996, arXiv.org.
- Jianqing Fan & Lingzhou Xue & Hui Zou, 2016. "Multitask Quantile Regression Under the Transnormal Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1726-1735, October.
- Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Rajaratnam, Bala & Salzman, Julia, 2013. "Best permutation analysis," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 193-223.
- Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
- Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Yan Zhou & Peter X.‐K. Song & Xiaoquan Wen, 2021. "Structural factor equation models for causal network construction via directed acyclic mixed graphs," Biometrics, The International Biometric Society, vol. 77(2), pages 573-586, June.
- Zheng, Bang Quan, 2021. "RGLS and RLS in Covariance Structure Analysis," SocArXiv aejgf, Center for Open Science.
- Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
- Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
- Zhang, Qiang & Ip, Edward H. & Pan, Junhao & Plemmons, Robert, 2017. "Individual-specific, sparse inverse covariance estimation in generalized estimating equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 96-103.
- Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
- Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
- Kang, Xiaoning & Wang, Mingqiu, 2021. "Ensemble sparse estimation of covariance structure for exploring genetic disease data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Yi, Feng & Zou, Hui, 2013. "SURE-tuned tapering estimation of large covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 339-351.
- Konrad Furmańczyk, 2021. "Estimation of autocovariance matrices for high dimensional linear processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 595-613, May.
- Banerjee, Sayantan & Akbani, Rehan & Baladandayuthapani, Veerabhadran, 2019. "Spectral clustering via sparse graph structure learning with application to proteomic signaling networks in cancer," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 46-69.
- Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
- Song Liu & Yuhong Yang, 2012. "Combining models in longitudinal data analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 233-254, April.
- Peter Bickel & Bo Li & Alexandre Tsybakov & Sara Geer & Bin Yu & Teófilo Valdés & Carlos Rivero & Jianqing Fan & Aad Vaart, 2006. "Regularization in statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 271-344, September.
- Li, Fanqun & Zhao, Mingtao & Zhang, Kongsheng, 2024. "Bayesian adaptive Lasso estimation of large graphical model based on modified Cholesky decomposition," Statistics & Probability Letters, Elsevier, vol. 206(C).
- Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
- Fang, Qian & Yu, Chen & Weiping, Zhang, 2020. "Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- Pesaran, M. H. & Yamagata, T., 2012. "Testing CAPM with a Large Number of Assets (Updated 28th March 2012)," Cambridge Working Papers in Economics 1210, Faculty of Economics, University of Cambridge.
- Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Chi, Eric C. & Lange, Kenneth, 2014. "Stable estimation of a covariance matrix guided by nuclear norm penalties," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 117-128.
- Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
- Fisher, Thomas J. & Sun, Xiaoqian, 2011. "Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1909-1918, May.
- Liang, Wanfeng & Wu, Yue & Ma, Xiaoyan, 2022. "Robust sparse precision matrix estimation for high-dimensional compositional data," Statistics & Probability Letters, Elsevier, vol. 184(C).
- Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
- David Hallac & Peter Nystrup & Stephen Boyd, 2019. "Greedy Gaussian segmentation of multivariate time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 727-751, September.
- Xue, Lingzhou & Zou, Hui, 2013. "Minimax optimal estimation of general bandable covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 45-51.
- John Stephen Yap & Jianqing Fan & Rongling Wu, 2009. "Nonparametric Modeling of Longitudinal Covariance Structure in Functional Mapping of Quantitative Trait Loci," Biometrics, The International Biometric Society, vol. 65(4), pages 1068-1077, December.
- Verzelen, N. & Villers, F., 2009. "Tests for Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1894-1905, March.