IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/aejgf_v1.html
   My bibliography  Save this paper

RGLS and RLS in Covariance Structure Analysis

Author

Listed:
  • Zheng, Bang Quan

Abstract

This paper assesses the performance of regularized generalized least squares (RGLS) and reweighted least squares (RLS) methodologies in a confirmatory factor analysis model. Normal theory maximum likelihood (ML) and GLS statistics are based on large sample statistical theory. However, violation of asymptotic sample size is ubiquitous in real applications of structural equation modeling (SEM), and ML and GLS goodness-of-fit tests in SEM often make incorrect decisions on the true model. The novel methods RGLS and RLS aim to correct the over-rejection by ML and under-rejection by GLS. Proposed by Arruda and Bentler (2017), RGLS replaces a GLS weight matrix with a regularized one. Rediscovered by Hayakawa (2019), RLS replaces this weight matrix with one that derives from an ML function. Both of these methods outperform ML and GLS when samples are small, yet no studies have compared their relative performance. A confirmatory factor analysis Monte Carlo simulation study with normal and non-normal data was carried out to examine the statistical performance of these two methods at different sample sizes. Based on empirical rejection frequencies and empirical distributions of test statistics, we find that RLS and RGLS have equivalent performance when N≥70; whereas when N<70, RLS outperforms RGLS. Both methods clearly outperform ML and GLS with N≤400. Nonetheless, adopting mean and variance adjusted test proposed by Hayakawa (2019) for non-normal data, our results show that RGLS slightly outperforms RLS.

Suggested Citation

  • Zheng, Bang Quan, 2021. "RGLS and RLS in Covariance Structure Analysis," SocArXiv aejgf_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:aejgf_v1
    DOI: 10.31219/osf.io/aejgf_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/615c9a2cfd5b23004598419b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/aejgf_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:aejgf_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.