Bayesian structure learning in graphical models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2015.01.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Aliye Atay-Kayis & Helène Massam, 2005. "A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models," Biometrika, Biometrika Trust, vol. 92(2), pages 317-335, June.
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
- Ghosal, Subhashis, 2000. "Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 49-68, July.
- Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
- McKay Curtis, S. & Banerjee, Sayantan & Ghosal, Subhashis, 2014. "Fast Bayesian model assessment for nonparametric additive regression," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 347-358.
- Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Yuan, Ming & Lin, Yi, 2005. "Efficient Empirical Bayes Variable Selection and Estimation in Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1215-1225, December.
- Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
- Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
- Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cao, Xuan & Khare, Kshitij & Ghosh, Malay, 2020. "Consistent Bayesian sparsity selection for high-dimensional Gaussian DAG models with multiplicative and beta-mixture priors," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Lee, Kyoungjae & Jo, Seongil & Lee, Jaeyong, 2022. "The beta-mixture shrinkage prior for sparse covariances with near-minimax posterior convergence rate," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Lee, Kwangmin & Lee, Jaeyong, 2023. "Post-processed posteriors for sparse covariances," Journal of Econometrics, Elsevier, vol. 236(1).
- Xingqi Du & Subhashis Ghosal, 2018. "Bayesian Discriminant Analysis Using a High Dimensional Predictor," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 112-145, December.
- Atchadé, Yves F., 2019. "Quasi-Bayesian estimation of large Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 656-671.
- Lee, Kyoungjae & Cao, Xuan, 2022. "Bayesian joint inference for multiple directed acyclic graphs," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Liang, Wanfeng & Wu, Yue & Ma, Xiaoyan, 2022. "Robust sparse precision matrix estimation for high-dimensional compositional data," Statistics & Probability Letters, Elsevier, vol. 184(C).
- Cao Xuan & Ding Lili & Mersha Tesfaye B., 2020. "Joint variable selection and network modeling for detecting eQTLs," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(1), pages 1-15, February.
- Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
- Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Banerjee, Sayantan & Akbani, Rehan & Baladandayuthapani, Veerabhadran, 2019. "Spectral clustering via sparse graph structure learning with application to proteomic signaling networks in cancer," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 46-69.
- Kang, Xiaoning & Wang, Mingqiu, 2021. "Ensemble sparse estimation of covariance structure for exploring genetic disease data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
- Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
- Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
- Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
- Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.
- Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Avagyan, Vahe & Nogales, Francisco J., 2014. "Improving the graphical lasso estimation for the precision matrix through roots ot the sample convariance matrix," DES - Working Papers. Statistics and Econometrics. WS ws141208, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
- Xingqi Du & Subhashis Ghosal, 2018. "Bayesian Discriminant Analysis Using a High Dimensional Predictor," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 112-145, December.
- Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
- repec:cte:wsrepe:24534 is not listed on IDEAS
- Sakae Oya, 2022. "A Bayesian Graphical Approach for Large-Scale Portfolio Management with Fewer Historical Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(3), pages 507-526, September.
- Liang, Wanfeng & Ma, Xiaoyan, 2024. "A new approach for ultrahigh-dimensional covariance matrix estimation," Statistics & Probability Letters, Elsevier, vol. 204(C).
- Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
More about this item
Keywords
Graphical lasso; Graphical models; Laplace approximation; Posterior convergence; Precision matrix;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:147-162. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.