IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/12-05.html
   My bibliography  Save this paper

Testing CAPM with a Large Number of Assets

Author

Listed:
  • M Hashem Pesaran
  • Takashi Yamagata

Abstract

This paper is concerned with testing the time series implications of the capital asset pricing model (CAPM) due to Sharpe (1964) and Lintner (1965), when the number of securities, N, is large relative to the time dimension, T, of the return series. Two new tests of CAPM are proposed that exploit recent advances on the analysis of large panel data models, and are valid even if N>T. When the errors are Gaussian and cross sectionally independent, a test, denoted by J_{α,1}, is proposed which is N(0,1) as N→∞, with T fixed. Even when the errors are non-Gaussian we are still able to show that J_{α,1} tends to N(0,1) so long as the errors are cross-sectionally independent and N/T³→0, with N and T→∞, jointly. In the case of cross sectionally correlated errors, using a threshold estimator of the average squares of pair-wise error correlations, a modified version of J_{α,1}, denoted by J_{α,2}, is proposed. Small sample properties of the tests are compared using Monte Carlo experiments designed specifically to match the correlations, volatilities, and other distributional features of the residuals of Fama-French three factor regressions of individual securities in the Standard & Poor 500 index. Overall, the proposed tests perform best in terms of power, with empirical sizes very close to the chosen nominal value even in cases where N is much larger than T. The J_{α,2} test (which allows for non-Gaussian and weakly cross correlated errors) is applied to all securities in the S&P 500 index with 60 months of return data at the end of each month over the period September 1989-September 2011. Statistically significant evidence against Sharpe-Lintner CAPM is found mainly during the recent financial crisis. Furthermore, a strong negative correlation is found between a twelve-month moving average p-values of the J_{α,2} test and the returns of long/short equity strategies relative to the return on S&P 500 over the period December 2006 to September 2011, suggesting that abnormal profits are earned during episodes of market inefficiencies.

Suggested Citation

  • M Hashem Pesaran & Takashi Yamagata, 2012. "Testing CAPM with a Large Number of Assets," Discussion Papers 12/05, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:12/05
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2012/1205.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    3. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    4. Affleck-Graves, John & McDonald, Bill, 1990. "Multivariate Tests of Asset Pricing: The Comparative Power of Alternative Statistics," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(2), pages 163-185, June.
    5. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    6. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    7. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    8. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    9. Frederick Wong, 2003. "Efficient estimation of covariance selection models," Biometrika, Biometrika Trust, vol. 90(4), pages 809-830, December.
    10. repec:bla:jfinan:v:44:y:1989:i:4:p:889-908 is not listed on IDEAS
    11. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    12. Peter Bossaerts & Charles Plott & William R. Zame, 2007. "Prices and Portfolio Choices in Financial Markets: Theory, Econometrics, Experiments," Econometrica, Econometric Society, vol. 75(4), pages 993-1038, July.
    13. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    14. Ullah, Aman, 1974. "On the sampling distribution of improved estimators for coefficients in linear regression," Journal of Econometrics, Elsevier, vol. 2(2), pages 143-150, July.
    15. Todd Headrick & Shlomo Sawilowsky, 1999. "Simulating correlated multivariate nonnormal distributions: Extending the fleishman power method," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 251-251, June.
    16. Todd Headrick & Shlomo Sawilowsky, 1999. "Simulating correlated multivariate nonnormal distributions: Extending the fleishman power method," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 25-35, March.
    17. Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
    18. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    19. Gungor, Sermin & Luger, Richard, 2009. "Exact distribution-free tests of mean-variance efficiency," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 816-829, December.
    20. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    21. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    22. Sermin Gungor & Richard Luger, 2013. "Testing Linear Factor Pricing Models With Large Cross Sections: A Distribution-Free Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 66-77, January.
    23. Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
    24. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    25. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2007. "Multivariate Tests of MeanVariance Efficiency With Possibly Non-Gaussian Errors: An Exact Simulation-Based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 398-410, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2019. "Exponent of Cross-sectional Dependence for Residuals," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 46-102, September.
    2. Sermin Gungor & Richard Luger, 2016. "Multivariate Tests of Mean-Variance Efficiency and Spanning With a Large Number of Assets and Time-Varying Covariances," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 161-175, April.
    3. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    4. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    5. Seung C. Ahn & Alex R. Horenstein, 2017. "Asset Pricing and Excess Returns over the Market Return," Working Papers 2017-12, University of Miami, Department of Economics.
    6. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    7. Marcelo Bianconi & Joe Akira Yoshino, 2015. "Empirical Estimation of the Cost of Equity: An Application to Selected Brazilian Utilities Companies," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 1-21, February.
    8. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    9. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    10. Kim, Soohun & Skoulakis, Georgios, 2018. "Ex-post risk premia estimation and asset pricing tests using large cross sections: The regression-calibration approach," Journal of Econometrics, Elsevier, vol. 204(2), pages 159-188.
    11. Linton, O. & Tang, H., 2020. "Estimation of the Kronecker Covariance Model by Quadratic Form," Cambridge Working Papers in Economics 2050, Faculty of Economics, University of Cambridge.
    12. David Ardia & S'ebastien Laurent & Rosnel Sessinou, 2024. "High-Dimensional Mean-Variance Spanning Tests," Papers 2403.17127, arXiv.org.
    13. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    14. Ge, S. & Li, S. & Linton, O., 2020. "A Dynamic Network of Arbitrage Characteristics," Cambridge Working Papers in Economics 2060, Faculty of Economics, University of Cambridge.
    15. Feng, Long & Lan, Wei & Liu, Binghui & Ma, Yanyuan, 2022. "High-dimensional test for alpha in linear factor pricing models with sparse alternatives," Journal of Econometrics, Elsevier, vol. 229(1), pages 152-175.
    16. Auld, T., 2022. "Political markets as equity price factors," Cambridge Working Papers in Economics 2264, Faculty of Economics, University of Cambridge.
    17. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    18. Dante Amengual & Luca Repetto, 2014. "Testing a Large Number of Hypotheses in Approximate Factor Models," Working Papers wp2014_1410, CEMFI.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pesaran, M. H. & Yamagata, T., 2012. "Testing CAPM with a Large Number of Assets (Updated 28th March 2012)," Cambridge Working Papers in Economics 1210, Faculty of Economics, University of Cambridge.
    2. M Hashem Pesaran & Takashi Yamagata, 2024. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
    3. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2010. "Asset-pricing anomalies and spanning: Multivariate and multifactor tests with heavy-tailed distributions," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 763-782, September.
    4. Sermin Gungor & Richard Luger, 2016. "Multivariate Tests of Mean-Variance Efficiency and Spanning With a Large Number of Assets and Time-Varying Covariances," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 161-175, April.
    5. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2019. "Exponent of Cross-sectional Dependence for Residuals," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 46-102, September.
    6. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    7. Enrique Sentana, 2009. "The econometrics of mean-variance efficiency tests: a survey," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 65-101, November.
    8. Gungor, Sermin & Luger, Richard, 2015. "Bootstrap Tests Of Mean-Variance Efficiency With Multiple Portfolio Groupings," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 35-65, Mars-Juin.
    9. Beaulieu, Marie-Claude & Gagnon, Marie-Hélène & Khalaf, Lynda, 2016. "Less is more: Testing financial integration using identification-robust asset pricing models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 171-190.
    10. Mardy Chiah & Daniel Chai & Angel Zhong & Song Li, 2016. "A Better Model? An Empirical Investigation of the Fama–French Five-factor Model in Australia," International Review of Finance, International Review of Finance Ltd., vol. 16(4), pages 595-638, December.
    11. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    12. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    13. Kostakis, Alexandros & Muhammad, Kashif & Siganos, Antonios, 2012. "Higher co-moments and asset pricing on London Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 913-922.
    14. David Ardia & S'ebastien Laurent & Rosnel Sessinou, 2024. "High-Dimensional Mean-Variance Spanning Tests," Papers 2403.17127, arXiv.org.
    15. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    16. Grauer, Robert R. & Janmaat, Johannus A., 2009. "On the power of cross-sectional and multivariate tests of the CAPM," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 775-787, May.
    17. Kolari, James W. & Huang, Jianhua Z. & Butt, Hilal Anwar & Liao, Huiling, 2022. "International tests of the ZCAPM asset pricing model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    18. Baek, Seungho & Bilson, John F.O., 2015. "Size and value risk in financial firms," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 295-326.
    19. Michael Ungeheuer & Martin Weber, 2021. "The Perception of Dependence, Investment Decisions, and Stock Prices," Journal of Finance, American Finance Association, vol. 76(2), pages 797-844, April.
    20. Auld, T., 2022. "Political markets as equity price factors," Cambridge Working Papers in Economics 2264, Faculty of Economics, University of Cambridge.

    More about this item

    Keywords

    CAPM; Testing for alpha; Market e¢ ciency; Long/short equity returns; Large panels; Weak and strong cross-sectional dependence.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:12/05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Hodgson (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.