IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i4d10.1007_s00184-020-00790-2.html
   My bibliography  Save this article

Estimation of autocovariance matrices for high dimensional linear processes

Author

Listed:
  • Konrad Furmańczyk

    (Warsaw University of Life Sciences (SGGW))

Abstract

In this paper under some mild restrictions upper bounds on the rate of convergence for estimators of $$p\times p$$ p × p autocovariance and precision matrices for high dimensional linear processes are given. We show that these estimators are consistent in the operator norm in the sub-Gaussian case when $$p={\mathcal {O}}\left( n^{\gamma /2}\right) $$ p = O n γ / 2 for some $$\gamma >1$$ γ > 1 , and in the general case when $$ p^{2/\beta }(n^{-1} \log p)^{1/2}\rightarrow 0$$ p 2 / β ( n - 1 log p ) 1 / 2 → 0 for some $$\beta >2$$ β > 2 as $$ p=p(n)\rightarrow \infty $$ p = p ( n ) → ∞ and the sample size $$n\rightarrow \infty $$ n → ∞ . In particular our results hold for multivariate AR processes. We compare our results with those previously obtained in the literature for independent and dependent data. We also present non-asymptotic bounds for the error probability of these estimators.

Suggested Citation

  • Konrad Furmańczyk, 2021. "Estimation of autocovariance matrices for high dimensional linear processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 595-613, May.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:4:d:10.1007_s00184-020-00790-2
    DOI: 10.1007/s00184-020-00790-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-020-00790-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-020-00790-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    2. Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
    3. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    4. Timothy L. McMurry & Dimitris N. Politis, 2010. "Banded and tapered estimates for autocovariance matrices and the linear process bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 471-482, November.
    5. Furrer, Reinhard & Bengtsson, Thomas, 2007. "Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 227-255, February.
    6. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    7. McMurry, Timothy L & Politis, D N, 2010. "Banded and Tapered Estimates for Autocovariance Matrices and the Linear Process Bootstrap," University of California at San Diego, Economics Working Paper Series qt5h9259mb, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    2. Gonçalves, Sílvia & Perron, Benoit, 2020. "Bootstrapping factor models with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
    3. Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
    4. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    5. Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
    6. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    7. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
    8. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    9. Huang, Na & Fryzlewicz, Piotr, 2018. "NOVELIST estimator of large correlation and covariance matrices and their inverses," LSE Research Online Documents on Economics 89055, London School of Economics and Political Science, LSE Library.
    10. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    11. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2019. "Exponent of Cross-sectional Dependence for Residuals," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 46-102, September.
    12. Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    13. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    14. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    15. Yi, Feng & Zou, Hui, 2013. "SURE-tuned tapering estimation of large covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 339-351.
    16. Yumou Qiu & Song Xi Chen, 2015. "Bandwidth Selection for High-Dimensional Covariance Matrix Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1160-1174, September.
    17. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
    18. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    19. Xue, Lingzhou & Zou, Hui, 2013. "Minimax optimal estimation of general bandable covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 45-51.
    20. Farnè, Matteo & Montanari, Angela, 2020. "A large covariance matrix estimator under intermediate spikiness regimes," Journal of Multivariate Analysis, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:4:d:10.1007_s00184-020-00790-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.