Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Mohsen Pourahmadi, 2007. "Cholesky Decompositions and Estimation of A Covariance Matrix: Orthogonality of Variance--Correlation Parameters," Biometrika, Biometrika Trust, vol. 94(4), pages 1006-1013.
- Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
- Ledoit, Olivier & Wolf, Michael, 2003.
"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,"
Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
- Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
- Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
- Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
- Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
- Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arnab Chakrabarti & Rituparna Sen, 2018. "Some Statistical Problems with High Dimensional Financial data," Papers 1808.02953, arXiv.org.
- Wang, Xuanci & Zhang, Bin, 2024. "Target selection in shrinkage estimation of covariance matrix: A structural similarity approach," Statistics & Probability Letters, Elsevier, vol. 208(C).
- Yang, Guangren & Liu, Yiming & Pan, Guangming, 2019. "Weighted covariance matrix estimation," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 82-98.
- Yuki Ikeda & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "Comparison of Linear Shrinkage Estimators of a Large Covariance Matrix in Normal and Non-normal Distributions," CIRJE F-Series CIRJE-F-970, CIRJE, Faculty of Economics, University of Tokyo.
- Lee, Kyoungjae & Jo, Seongil & Lee, Jaeyong, 2022. "The beta-mixture shrinkage prior for sparse covariances with near-minimax posterior convergence rate," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Brett Naul & Bala Rajaratnam & Dario Vincenzi, 2016. "The role of the isotonizing algorithm in Stein’s covariance matrix estimator," Computational Statistics, Springer, vol. 31(4), pages 1453-1476, December.
- Haddouche, Anis M. & Fourdrinier, Dominique & Mezoued, Fatiha, 2021. "Scale matrix estimation of an elliptically symmetric distribution in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Jonathan Gillard & Emily O’Riordan & Anatoly Zhigljavsky, 2023. "Polynomial whitening for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1427-1461, September.
- Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
- Tatsuya Kubokawa & Akira Inoue, 2012. "Estimation of Covariance and Precision Matrices in High Dimension," CIRJE F-Series CIRJE-F-855, CIRJE, Faculty of Economics, University of Tokyo.
- Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
- Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
- Yuki Ikeda & Tatsuya Kubokawa, 2015. "Linear Shrinkage Estimation of Large Covariance Matrices with Use of Factor Models," CIRJE F-Series CIRJE-F-958, CIRJE, Faculty of Economics, University of Tokyo.
- Zhou, Yang & Chen, Di-Rong & Huang, Wei, 2019. "A class of optimal estimators for the covariance operator in reproducing kernel Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 166-178.
- Pedro Duarte Silva, A., 2011. "Two-group classification with high-dimensional correlated data: A factor model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2975-2990, November.
- Tiefeng Ma & Shuangzhe Liu & S. Ahmed, 2014. "Shrinkage estimation for the mean of the inverse Gaussian population," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 733-752, August.
- Carel F. W. Peeters & Mark A. Wiel & Wessel N. Wieringen, 2020. "The spectral condition number plot for regularization parameter evaluation," Computational Statistics, Springer, vol. 35(2), pages 629-646, June.
- Touloumis, Anestis, 2015. "Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 251-261.
- Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
- Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
- Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
- Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
- Huang, Na & Fryzlewicz, Piotr, 2018. "NOVELIST estimator of large correlation and covariance matrices and their inverses," LSE Research Online Documents on Economics 89055, London School of Economics and Political Science, LSE Library.
- Na Huang & Piotr Fryzlewicz, 2019. "NOVELIST estimator of large correlation and covariance matrices and their inverses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 694-727, September.
- Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
- Chen, Jia & Li, Degui & Linton, Oliver, 2019.
"A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
- Jia Chen & Degui Li & Oliver Linton, 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Discussion Papers 18/14, Department of Economics, University of York.
- Chen, J. & Li, D. & Linton, O., 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Cambridge Working Papers in Economics 1876, Faculty of Economics, University of Cambridge.
- Paolo Giordani & Xiuyan Mun & Robert Kohn, 2012. "Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 154-192, December.
- Yuki Ikeda & Tatsuya Kubokawa, 2015. "Linear Shrinkage Estimation of Large Covariance Matrices with Use of Factor Models," CIRJE F-Series CIRJE-F-958, CIRJE, Faculty of Economics, University of Tokyo.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2019.
"Exponent of Cross-sectional Dependence for Residuals,"
Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 46-102, September.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2018. "Exponent of Cross-sectional Dependence for Residuals," CESifo Working Paper Series 7223, CESifo.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2018. "Exponent of cross-sectional dependence for residuals," Monash Econometrics and Business Statistics Working Papers 13/18, Monash University, Department of Econometrics and Business Statistics.
- Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
- Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
- Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Daniel Bartz & Kerr Hatrick & Christian W Hesse & Klaus-Robert Müller & Steven Lemm, 2013. "Directional Variance Adjustment: Bias Reduction in Covariance Matrices Based on Factor Analysis with an Application to Portfolio Optimization," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-14, July.
More about this item
Keywords
Covariance matrix Shrinkage estimation High-dimensional data analysis;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1909-1918. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.