Graph Selection with GGMselect
Author
Abstract
Suggested Citation
DOI: 10.1515/1544-6115.1625
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Frederick Wong, 2003. "Efficient estimation of covariance selection models," Biometrika, Biometrika Trust, vol. 90(4), pages 809-830, December.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
- Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bar-Hen, Avner & Poggi, Jean-Michel, 2016. "Influence measures and stability for graphical models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 145-154.
- Zhu, Bo & Liu, Jiahao & Lin, Renda & Chevallier, Julien, 2021. "Cross-border systemic risk spillovers in the global oil system: Does the oil trade pattern matter?," Energy Economics, Elsevier, vol. 101(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Villers Fanny & Schaeffer Brigitte & Bertin Caroline & Huet Sylvie, 2008. "Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-37, September.
- Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
- Li, Fanqun & Zhao, Mingtao & Zhang, Kongsheng, 2024. "Bayesian adaptive Lasso estimation of large graphical model based on modified Cholesky decomposition," Statistics & Probability Letters, Elsevier, vol. 206(C).
- Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
- Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
- Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
- Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
- Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Benjamin Poignard & Manabu Asai, 2023.
"Estimation of high-dimensional vector autoregression via sparse precision matrix,"
The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
- Benjamin Poignard & Manabu Asai, 2021. "Estimation of High Dimensional Vector Autoregression via Sparse Precision Matrix," Discussion Papers in Economics and Business 21-03, Osaka University, Graduate School of Economics.
- Pesaran, M. Hashem & Yamagata, Takashi, 2012.
"Testing CAPM with a Large Number of Assets,"
IZA Discussion Papers
6469, Institute of Labor Economics (IZA).
- M Hashem Pesaran & Takashi Yamagata, 2012. "Testing CAPM with a Large Number of Assets," Discussion Papers 12/05, Department of Economics, University of York.
- Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
- Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
- de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018.
"Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition,"
CEPR Discussion Papers
12792, C.E.P.R. Discussion Papers.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2023. "Identifying network ties from panel data: Theory and an application to tax competition," CeMMAP working papers 21/23, Institute for Fiscal Studies.
- Aureo de Paula & Imran Rasul & Pedro Souza, 2019. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," Papers 1910.07452, arXiv.org, revised Oct 2023.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2023. "Identifying network ties from panel data: theory and an application to tax competition," IFS Working Papers WCWP21/23, Institute for Fiscal Studies.
- Imran Rasul & Pedro Souza & Aureo de Paula, 2023. "Identifying Network Ties from Panel Data: Theory and an application to tax competition," POID Working Papers 081, Centre for Economic Performance, LSE.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2023. "Identifying network ties from panel data: theory and an application to tax competition," CeMMAP working papers 02/23, Institute for Fiscal Studies.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2019. "Identifying network ties from panel data: theory and an application to tax competition," CeMMAP working papers CWP55/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lichun Wang & Yuan You & Heng Lian, 2015. "Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models," Statistical Papers, Springer, vol. 56(3), pages 819-828, August.
- Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
- Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Gaussian graphical model; model selection; penalized empirical risk;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:3:n:3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.